UNCTAD
Ad Hoc Expert Meeting on Assessing Port Performance

Room XXVI
Palais des Nations
Geneva, Switzerland

12 December 2012

The Capacity in Container Port Terminals

by

Ms. Ana M. Martín Soberón
R&D Project Manager
Port Development Department
Fundación Valenciaport

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the view of the United Nations.
INTRODUCCIÓN: Valenciaport Foundation

The Valenciaport Foundation for Research, Promotion and Commercial Studies of the Valencian region (Valenciaport Foundation) has been conceived to further expand the reach of the logistics - ports community by serving as a research, training and cooperation centre of excellence.

The Valenciaport Foundation manifests an initiative of the Port Authority of Valencia (PAV), in collaboration with various other associations, companies and institutions.

The Valenciaport Foundation is presently active in numerous cooperation and internationalisation projects in well over twenty countries, principally located in Europe, the Far East and Latin America. It also works extensively at the service of the Spanish logistics chain providing both research and training services.
INTRODUCCIÓN: Planning and Port Development Team

The Planning and Port Development Department of the VPF is a team of individuals with substantial experience and prestige, which come from both the academic and professional fields. It consists of R&D&I specialists in the field of ports, transport economics, logistics and intermodality.

www.fundacion.valenciaport.com

INTRODUCCIÓN: MASPORT

AUTOMATION AND SIMULATION METHODOLOGIES FOR THE EVALUATION AND IMPROVEMENT OF PORT CONTAINER TERMINALS

www.masport.es
INTRODUCTION: Categories to measure port performance

<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational port performance</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>It expresses the amount of cargo a terminal handles over a period of time, without specifying the resources utilised. When output is expressed in monetary units, financial indicators are built. Examples: Annual traffic or throughput (t/year; TEUs/year)</td>
</tr>
<tr>
<td>Productivity</td>
<td>It is related to the work rate of the various resources a terminal has. That is, productivity can be defined as the amount of cargo (output) that a terminal handles per unit of time and resource. Examples: Berthing facility productivity (TEUs/m y year); Vessel productivity at port (TEUs/h); Crane productivity (movements/h)</td>
</tr>
<tr>
<td>Utilisation</td>
<td>It is the ratio (expressed in percentage form) between the utilisation of a given resource and the maximum utilisation possible over a period of time. Examples: Berth facility utilisation (% of occupancy)</td>
</tr>
<tr>
<td>Efficiency</td>
<td>It is the utilisation of ratios that express the coefficient between a result (output) – traffic and a resource (input) – infrastructure and equipment.</td>
</tr>
<tr>
<td>Capacity</td>
<td>It is the maximum traffic a port terminal can handle in a given scenario.</td>
</tr>
<tr>
<td>Level of Service</td>
<td>It provides a measure of the quality perceived by system clients and users.</td>
</tr>
</tbody>
</table>

Source: Monfort et al. (2011)
A. LEVELS OF SERVICE IN CONTAINER TERMINALS

It provides a measure of the quality perceived by system clients and users.

Main clients of a container terminal:

**SHIPPING LINES**

They perceive the quality of the service provided in two ways:

- Total amount of charges or tariffs that shipping lines must pay every time their vessels call at a port
- Duration of the call at port

\[ \frac{T_P}{Q} \]

- **\( T_P \):** Vessel time at port (call duration)
- **\( Q \):** Amount of cargo to be handle in a call at port

\[ T_P = T_w + T_m + T_s \]

- **\( T_w \):** Waiting time (anchorage), that is, due to port congestion the vessel must wait for a berth;
- **\( T_m \):** Manoeuvring time; and,
- **\( T_s \):** Service time or gross berthing time, that is, the time the vessel is at the berth

\[ \frac{T_P}{Q} = \frac{1}{Q} (T_w + T_m + T_s) \]
A. LEVELS OF SERVICE IN CONTAINER TERMINALS

\[
\frac{T_p}{Q} = \frac{1}{Q} (T_w + T_s + T_m)
\]

\[
\frac{T_p}{Q} = \frac{1}{Q} (T_w + T_m)
\]

\[
\frac{T_p}{Q} = \frac{T_s}{Q} \left(1 + \frac{T_w}{T_s}\right)
\]

Relative waiting time:

\[
\epsilon = \frac{T_w}{T_s}
\]

\(T_w\): Waiting time (anchorage), that is, due to port congestion the vessel must wait for a berth;

\(T_s\): Service time or gross berthing time, that is, the time the vessel is at the berth

\[
\frac{T_p}{Q} = \frac{T_s}{Q} \left(1 + \epsilon\right)
\]
A. LEVELS OF SERVICE IN CONTAINER TERMINALS

Productivity:

\[ \frac{T_p}{Q} = \frac{T_s}{Q} (1 + \epsilon) \]

So, the quality of service perceived by the shipping lines depends on:

- The relative waiting time
- The berth productivity
### A. LEVELS OF SERVICE IN CONTAINER TERMINALS

**VALENCIAPORT FOUNDATION PROPOSAL OF LEVELS OF SERVICE FOR THE SHIP-TO-SHORE SUBSYSTEM**

<table>
<thead>
<tr>
<th>LEVEL OF SERVICE</th>
<th>Relative waiting time</th>
<th>LEVELS OF SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>&gt; 0.2</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>0.1 - 0.2</td>
<td>CC, BC, AC</td>
</tr>
<tr>
<td>B</td>
<td>0.05 - 0.1</td>
<td>CB, BB, AB</td>
</tr>
<tr>
<td>A</td>
<td>up to 0.05</td>
<td>CA, BA, AA</td>
</tr>
</tbody>
</table>

| < 35             | 35-50                 | 50-65             | > 65 |

Annual average productivity of vessel at berth (P) (cont./h)

<table>
<thead>
<tr>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
</table>

Source: Monfort et al. (2011)

Road transport companies:

- Similar approach (but simpler)
- Much few operations inside the terminal (usually 1 o 2)
- Total operating time = waiting time + gate time + service time
A. LEVELS OF SERVICE IN CONTAINER TERMINALS

Cargo (importers and exporters):

- The amount of time that cargo stays in a terminal
- It depends on external factors including (the desire of freight forwarders themselves to use the terminal as a warehouse to regulate their freight, the efficiency of customs and inspection authorities)

B. CAPACITY CALCULATION IN CONTAINER TERMINALS

The capacity of a port terminal can be defined as the maximum traffic it can handle in a given scenario. As the conditions in which this threshold can be calculated are different, there are various concepts of capacity.

As a result, a variety of extreme conditions have appeared over time for the calculation of capacity, including the following:

- Those linked to the economic optimisation of facilities;
- Those established by facility saturation; and
- Those referring to the minimum acceptable quality of service perceived by clients, as an increase in traffic results in clients perceiving a decrease in terminal service quality.

Capacity calculation is an important terminal planning tool, as it does not only establish a terminal’s limits, but also different scenarios to see how the terminal would respond in those situations.
B. CAPACITY CALCULATION IN CONTAINER TERMINALS

1. HYPOTHESIS

2. BERTH CAPACITY
   a) Formula
   b) Number of berths
   c) Acceptable berth occupancy ratio
   d) Annual average productivity of vessel
   e) Recommendations for annual berth capacity per metre of berth

3. STORAGE CAPACITY
   a) Formula
   b) Area density: ground slots per area
   c) Operational average stacking height: static storage capacity
   d) Dwell time
   e) Recommendations for annual storage capacity per hectare of yard

4. CONCLUSIONS

Source: Monfort et al. (2011)
B. CAPACITY CALCULATION IN CONTAINER TERMINALS

1. HYPOTHESIS

• Enough draft

• Calculation by subsystems

1. HYPOTHESIS

• Transfer subsystem

• Delivery/Receipt subsystem

• Ship-to-shore subsystem: Analytical method and Simulation
  • Berth: \( f \) (number of berths, berth occupancy)
  • Vessel loading/unloading: \( f \) (number of cranes, number of transfer vehicles, equipment productivity)

• Storage subsystem: Empirical and analytical methods
  • Storage area
  • Operational average stacking height
  • Dwell time

\( f \) (yard equipment)
B. CAPACITY CALCULATION IN CONTAINER TERMINALS

2. BERTH CAPACITY

\[ C_B = n \times \phi \times t_{\text{year}} \times P \]

- \( n \): number of berths
- \( \phi \): acceptable berth occupancy ratio
- \( t_{\text{year}} \): hours the terminal is operational per year
- \( P \): annual average productivity of vessel at berth

The result can be a decimal number. It is recommended to round down in order to not overestimate the capacity.
\[ C_B = n \times \phi \times t_{\text{year}} \times P \]

**\(\phi\): acceptable berth occupancy ratio**

Associated to:

- **Traffic characterisation**: a distribution for the vessel inter arrival time probabilities \((f_1)\), and another distribution that depends on service time probabilities \((f_2)\)
- **Number of berths** \((n)\)
- **Relative waiting time** \(\varepsilon = T_w / T_s\)

\[ f_1 / f_2 / n \] System

\(\phi\) dependence on the relative waiting time and on the system \(f_1 / f_2 / n\) is a mistake

It is recommended to use the following queue systems depending on the type of terminal:

- **Common user terminals**: \(M/E_\mu/n\) system
  - Inter arrival distribution: Random M
  - Service time distribution: Erlang distribution of order \(K = 4\)
  - \(n\) berths

- **Terminal with tightly scheduled calls**: \(E_\kappa/E_\mu/n\) system
  - Inter arrival distribution: Erlang distribution of order \(K = 2\) / random
  - Service time distribution: Erlang distribution of order \(K = 4\)
  - \(n\) berths
BERTH OCCUPANCY RATIO $\phi$ DEPENDS ON THE RELATIVE WAITING TIME, THE NUMBER OF BERTHS AND THE TRAFFIC CHARACTERISATION ($M/E_4/n \circ E_2/E_4/n$).

$C_B = n \times \phi \times t_{\text{year}} \times P$

Berth capacity is not directly proportional to the number of berths.
The annual average productivity of vessel depends on:

- The average number of cranes deployed
- The productivity of the cranes
- The unoperating times
- The average size of the call

P is a “dynamic” variable

Source: Monfort et al. (2011)
P is a dynamic variable:

\[ C_B = n \times \phi \times t_{\text{year}} \times P \]

\[ \Delta \text{vessel size} \]

\[ \Delta \text{call size} \]

\[ \Delta \text{average number of cranes} \]

\[ \Delta P \]

\[ \Delta C_B \]

Source: The geography of the Transport Systems

\[ t_{\text{year}} : \text{hours the terminal is operational per year} \]

- \( f \) (the operating days of the port and the labour and climatological conditions)

\[ t_{\text{year}} = \frac{360 \text{ days}}{\text{year}} \times \frac{24 \text{ hours}}{\text{day}} = 8.640 \text{ hours/year} \]
$C_B = n \times \phi \times t_{\text{year}} \times P$

$C_B = n \times \phi \times t_{\text{year}} \times P \quad \text{(Containers/year)}$

$n = \frac{\text{Length of berthing facility}}{\text{Length of standard vessel} \times (100\% + K_{\text{separation}})}$

$C_B^* = \phi \times t_{\text{year}} \times P \quad \text{(Containers/m of berth y year)}$

$C_B = C_B^* \times \text{length of berth}$

DREWRY RECOMMENDATION FOR $C_B$

<table>
<thead>
<tr>
<th>BERTH CAPACITY (TEU per metre of quay p.a.)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed arrival schedule, competition encouraged, free-market tariff, gateway port</td>
<td>1.300</td>
<td>1.600</td>
</tr>
<tr>
<td>Mixed arrival schedule, regulated tariff, high berth occupancy, common user facility, gateway port</td>
<td>1.000</td>
<td>1.200</td>
</tr>
<tr>
<td>Tightly scheduled ship arrivals, low priority given to competition policy, high transhipment activity</td>
<td>800</td>
<td>1.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIZE OF THE TERMINAL</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>Medium</td>
<td>Large</td>
</tr>
<tr>
<td>$&gt; 250$ m</td>
<td>$&gt; 500$ m</td>
<td>$&gt; 1.000$ m</td>
</tr>
<tr>
<td>$&lt; 500$ m</td>
<td>$&lt; 1.000$ m</td>
<td></td>
</tr>
</tbody>
</table>

Source: Drewry (2002 y 2010)
### FVP RECOMMENDATION FOR $C_B$

**Lenght of berth**  
**Relative waiting time**  
**Number of berths**  
**Traffic characterisation and system**  
**Average number of cranes deployed**

<table>
<thead>
<tr>
<th>System and traffic profile</th>
<th>Annual average productivity of vessels at berth (P in vessel/year)</th>
<th>BERTH CAPACITY - CONTAINER TERMINAL (containers/metre of berth and year)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(containers/metre of berth and year)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_{year}$ = 300 days/24 hours x 5.54 days/year</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L_{berth}$ = 300 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relative waiting time: $T_{wa}/T = 0.05$</td>
<td></td>
</tr>
</tbody>
</table>

**Source:** Monfort et al. (2011)

---

$C_B = n \times \phi \times t_{year} \times P$

$C_B$ OF M/E$_4$/n SYSTEM, $\varepsilon=0.10$ and BERTHS of 300 m

**Source:** Monfort et al. (2011)
3. STORAGE CAPACITY

Two problems:
- The area required to cater for a given amount of traffic; and,
- The maximum amount of traffic that can be catered for by a given area.

\[ C_y = \#\text{ground\_slot} \times h \times \frac{365}{T_{\text{dw}}} \]

\#ground\_slots: number of TEU positions

\( h \): average operational height of stacks

\( T_{\text{dw}} \): average dwell time of containers in the storage area (days)

\( \frac{365}{T_{\text{dw}}} \): average number of turnovers per year

\[ C_y = \#\text{ground\_slot} \times (H \times K) \times \frac{365}{T_{\text{dw}}} \]

\#ground\_slots: number of TEU positions

\( H \): maximum height of stacks or nominal height of equipment

\( K \): operational factor (0.55-0.70)

\( T_{\text{dw}} \): average dwell time of containers in the storage area (days)

\( \frac{365}{T_{\text{dw}}} \): average number of turnovers per year
Area density: ground slots per area

- Depends on:
  - The distribution of blocks, roads and aisles between blocks
  - The yard shape
  - The yard organization (areas)

- Calculation
  - Empirical: based on aerial photos \textit{Monfort et al. (2011)}
  - Analytical: based on the dimensions of slots, roads and aisles \textit{Wieschemann y Rijsenbrij (2004) and Kuznetsov (2008)}

\[ C_Y = \frac{\#\text{ground_slots} \times h \times 365}{T_{dw}} \]
**FVP RECOMMENDATION FOR C_B**

For each type of yard equipment:

Area density x Operational average stacking height = Static capacity (C_S)

<table>
<thead>
<tr>
<th>Equipment (wide; nominal stacking height)</th>
<th>Area density (ground slots ha)</th>
<th>Operational average stacking height (h)</th>
<th>System density or static capacity (C_S) (TEU/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chasis</td>
<td>150 - 250</td>
<td>1,00</td>
<td>150 - 200</td>
</tr>
<tr>
<td>Forklift (--; 3)</td>
<td>130 - 190</td>
<td>1,80</td>
<td>234 - 300</td>
</tr>
<tr>
<td>Reachstacker (--; 3)</td>
<td>200 – 260</td>
<td>1,80</td>
<td>360 - 450</td>
</tr>
<tr>
<td>SC (--; 3+1)</td>
<td>265 – 330</td>
<td>1,80</td>
<td>475 - 500</td>
</tr>
<tr>
<td>RTG (6; 4+1)</td>
<td>260 – 300</td>
<td>2,40</td>
<td>650 - 670</td>
</tr>
<tr>
<td>RTG (7; 5+1)</td>
<td>290 - 310</td>
<td>2,75</td>
<td>800 - 850</td>
</tr>
<tr>
<td>RTG (8; 5+1)</td>
<td>300 - 350</td>
<td>2,75</td>
<td>825 - 965</td>
</tr>
<tr>
<td>RMG (9; 4+1)</td>
<td>340 - 430</td>
<td>2,80</td>
<td>1.100 – 1.200</td>
</tr>
</tbody>
</table>

Source: Monfort et al. (2011)
Dwell time

- It is inversely proportional to capacity. In this sense, for example, if average dwell time is reduced from 11 to 10 days, annual yard capacity increases by 10%.
- Dwell time in port is normally somewhat less in the case of export containers than for import containers.
- Dwell times range from 4 to 7 days depending on the port, the type of container (import or export) and the mode of transport the container uses to enter or leave the port.
- Depending on their necessity of space, port terminals can impose pricing initiatives in order to encourage or discourage the use of their facilities for the long term storage.

Source: Monfort et al. (2011)
4. CONCLUSIONS

\[ C_B = n \times \phi \times t_{year} \times P \]

- \( n \): number of berths
  - \( f \) (the size of the standard vessel)

- \( \phi \): acceptable berth occupancy rate (%)
  - \( f \) (the relative waiting time and the \( f_1/f_2/n \) system)
  - Common user terminal: \( M/E_4/n \)
  - Terminal with tightly scheduled calls: \( E_2/E_4/n \) (or \( M/E_4/n \))
  - Relative waiting time: 5% - 20%

- \( P \): annual average productivity of vessel (cont/h)
  - \( f \) (average number of cranes, their productivity and the unoperating times)
  - \( f \) (average size of the call)

---

4. CONCLUSIONS

\[ C_P = #ground_slot \times h \times \frac{365}{T_a} \]

- Area density
  - \( f \) (the yard equipment and the layout)

- \( h \): Operational average stacking height
  - \( f \) (the yard equipment and level of development of the TOS)

- \( T_{dw} \): Dwell time
  - \( f \) (external factors)

---

Depends on the quality of the service

Level of Service

Relative waiting time

Annual average productivity of vessel

Depends on the yard equipment
4. CONCLUSIONS

**B. CÁLCULO DE LA CAPACIDAD EN TPCs**

**BERTH CAPACITY** ↔ **STORAGE CAPACITY**

- **C_B** = \( n \times \phi \times t_{\text{year}} \times P \) (containers)
- **C_p** = \#_{\text{ground slot}} \times h \times \frac{365}{T_a} \) (TEUs)

**Conversion factor**

\( \text{TEUs/container} \)

Transhipment containers are included twice in the berth capacity calculation, but only once in the storage capacity calculation.

**C_Y eq B**

---

**4. CONCLUSIONS**

\[ C_{Y\,eq\,B} = K_{PTS} \times C_Y \]

Where,
- \( C_{Y\,eq\,B} \): Annual storage capacity equivalent to annual berth capacity
- \( K_{PTS} \): Container yard capacity vs. container berth capacity transformation coefficient

\[ K_{PTS} = \frac{200}{2 \times \%\text{O/D} + \%\text{TS}} \]

Where,
- %O/D: percentage of inland origin and destiny traffic (local cargo) over total traffic
- %TS: percentage of transhipment traffic over total traffic

For instance, if transhipment traffic is null, then \( K_{PTS} \) is 1, but if it is 100%, then \( K_{PTS} \) is 2, and if transhipment traffic is 50%, \( K_{PTS} \) is 1.33.
SUMMARY: Sea Port Capacity Manual

- Printed version available in Spanish
- Electronic version (CD) available in English and Spanish

Index

1. Introduction

2. The port terminal
   2.1 The terminal as a system
   2.2 Types of port terminals

3. Container terminals
   3.1. Types of container terminals according to yard equipment
   3.2. Description of operations

4. Measuring port performance, efficiency, capacity and level of service
   4.1. Measuring performance in ports
   4.2. Operational port performance
   4.3. Efficiency
   4.4. Capacity
   4.5. Level of Service
Index

5. Measuring port terminal capacity
   5.1. Methods of measurement
   5.2. Analytical calculation by subsystem: hypothesis
   5.3. Berth capacity
   5.4. Storage capacity

6. Examples of capacity calculations
   6.1. Scenario and source data for the new port container terminals
   6.2. Calculation of berth capacity
   6.3. Calculation of storage capacity
   6.4. Terminal restricting capacities

Appendix 1: Remarks and limitations on the calculation of berth capacity
Appendix 2: Safe distance (berthing gap)
Appendix 3: Annual capacity per metre of berth with berths of 250 and 350 metres in length
Appendix 4: Estimation of the Average Annual Berth Productivity

Bibliography

THE CAPACITY IN CONTAINER PORT TERMINALS

Ana María Martín Soberón– R&D Project Manager
amartin@fundacion.valenciaport.com