
Eco-intensification Soil Biology

ORGANISM	NUMBER PER ACRE	LBS PER ACRE
Bacteria	800,000,000,000,000,000	2,600
Actinomycetes	20,000,000,000,000,000	1,300
Fungi	200,000,000,000,000	2,600
Algae	4,000,000,000	90
Protozoa	2,000,000,000,000	90
Nematodes	80,000,000	45
Earthworms	40,000	445
Arthropods	8,160,000	830
(Adapted from: L.M. Th	hompson & F. Troeh, Soils & Soil Fertility	, 4th ed., 1978, p. 111.)

62 The Biological Farmer

(for a plow layer 62)	inches in depth, a	pproximately 2,000	,000 pounds)
S.	ANDY LOAM	SILT LOAM	CLAY LOAM
COMPONENTS	(lbs/acre)	(lbs/acre)	(lbs/acre)
Organic matter	20,000	54,000	96,000
Living portion, microbes earthworms, etc.	1,000	3,600	4,000
Nitrogen	1,340	3,618	6,432
Silicon dioxide	1,905,000	1.570.000	1.440.000
Aluminum oxide	22,600	190,000	240,000
Iron oxide	17,000	60,000	80,000
Calcium oxide	5,400	6,800	26,000
Magnesium oxide	4,000	10,400	17,000
Phosphate	400	5,200	10,000
Potash	2,600	35,000	40,000
Sulfur trioxide	600	8,500	6,000
Manganese	2,500	2,000	2,000
Zinc	100	220	320
Copper	120	60	60
Molybdenum	40	40	40
Boron	90	130	130
Chlorine	50	200	200

Eco-intensification Soil Biology

How organisms help plants

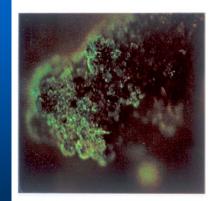
Make nutrients available

- Decompose Organic Matter and release nutrients
- Dissolve minerals from rock
- Chelating and complexing nutrients
- Free living organisms fixing nitrogen from the soil air into plant available Azobacteria & Cyanobacteria

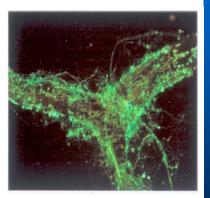
Eco-intensification Soil Biology

How organisms help plants

- Plant Health:
 - Creating enzymes, vitamins, amino acids, and plant growth factors
 - Stimulating plant immune system
- Nutrition:
 - Rhizobia Fixing soil nitrogen into plant usable forms
 - VAM (Vesiculum Arbusular Mycorrhizal) fungi -Directly feeding nutrients into plants


Eco-intensification Soil Biology

How organisms help plants


Improving soil structure

- Building peds by disturbing and stirring clay and other particles into open random forms and gluing them together with humus, organic polymers and fungi hyphae.
- Macro-organism (earth worms and beetles etc) make large pores for drainage
- 'Cultivating' the soil, breaking into hard pans and moving soil particles around and making pores.

Soil Aggregation A Biological Process

Glomalin is the green material on this soil aggregate.

An arbuscular mycorrhizal fungus colonizing a root. Hyphae are the thread-like filaments. The green coating on hyphae is glomalin.

Eco-intensification Soil Biology

How organisms help plants

Fight Pests and Diseases

- Predating pathogens eg. eating pests and diseases
 - Protozia eating bacteria wilt
 - Fungi eating nematodes
 - Nematode eating nematodes
- Producing compounds that kill pathogens
- Suppressing pathogens through outnumbering them
- Detoxifying synthetic chemicals and poisons

Eco-intensification Soil Biology How organisms help plants

Fungus trapping root eating nematode

Organic Matter

Use Compost Microorganisms to Convert Soil Carbon into Stable Forms

- Convert the carbon compounds that are readily oxidised into CO2 into stable polymers
- The stable forms of soil carbon such as humus and glomalin are manufactured by microorganisms.
- Can last thousands of years in the soil.

Mineral Balance

The Yield of any Production System is Limited by Mineral/s that are Deficient

- A balanced mineral rich soil is essential to obtain optimum yields
- Conventional Agriculture usually only focuses on 3 elements – NPK
- Plants need around 30 elements
- Just one deficient element will limit yield
- A complete analysis soil test is used to assess the mineral balance of the soil

Mineral Balance

Soil Test Minimum Nutrient Levels

- Organic matter
- Calcium
- Phosphorous P1
- Phosphorous P2
- Nitrogen
- Magnesium
- Potassium
- Sulphur

3 - 6% 1,800 ppm 100 ppm

6.0 - 6.8

- 200 ppm
- 60 ppm
- 300 ppm
- 175 ppm
- 75 ppm

Mineral Balance

20 ppm (Keep below 70ppm)

Trace Elements

- Zinc
- Manganese
- Iron
- Sodium
- Copper
- Boron
- Chlorine
- Molybdenum
- Cobalt
- 1 ppm

12 ppm

20 ppm

20 ppm

5 ppm

3 ppm

3 ppm

0.5 ppm

Mineral Balance

Examples of some critical mineral interactions

Calcium

 High calcium soils have a more friable structure and suppress disease pathogens in soils and plants

Boron

 Boron is essential for plants to transport calcium. Calcium is relatively immobile in plant cells and every cell needs calcium

Molybdenum

 Plants need small amounts of Molybdenum as a catalyst in the enzyme that converts nitrate and glucose into amino acids. It increases nitrogen use efficiency

Mineral Balance

The required nutrients are obtained as:

Ground minerals

Lime, dolomite, gypsum, rock phosphate, basalt quarry dust

Soluble minerals

Trace elements and naturally mined potassium sulfate.

Organic forms

- Legumes, manures, organic mulch and naturally occurring free bacteria for nitrogen.
- Composting speeds up the process of turning the minerals into plant available forms.

Organic Nutrients

Nitrogen

- Manure
- Compost
- Legumes
- Green manures
- Fish emulsion
- Microorganisms

4-8%

1 49/ 01/

- 1-4% av. 2%
- 20 60 kg per hectare
- 0.5-5%
- 4-11%
- up 40kg per hectare

Organic Nutrients

Nitrogen

- Table of the Amount of Organic Nitrogen Held in the Soil
- 1% SOC = 2,400 kg of organic N per hectare = 1.72% SOM
- 2% SOC = 4,800 kg of organic N per hectare = 3.44% SOM
- 3% SOC = 7,200 kg of organic N per hectare = 5.16% SOM
- 4% SOC = 9,600 kg of organic N per hectare = 6.88% SOM
- 5% SOC = 12,000 kg of organic N per hectare = 8.50% SOM

Organic Nutrients

Nitrogen

- Nitrogen levels increase as soil organic matter (SOM) increases
- SOM Carbon/Nitrogen Ratio = Between 12/1 to 9/1
- Every 1% increase of SOM per 20 cm/Ha holds about 4,000 kgs of N
- Most of this N is in amino acid form
- The latest science shows that plants directly utilise amino acids and that biologically active soils convert it into nitrate and ammonia
- Building up SOM is the best way to increase soil nitrogen

Organic Nutrients

Phosphorous

Manure	up to 2%
Compost	up to 1%
Rock phosphate	24-30%
Bone meal	21-30%
Fish emulsion	1%

Organic Nutrients

Potassium

Potassium Sulphate	50%
Basalt dust	4%
Granite dust	3.6-6%
Kelp	4-15%
Wood ashes	7%
Manures	0.3-2%
Compost	1%
Sawdust	1%
Fish emulsion	1%

Organic Nutrients

Magnesium

Dolomite	20%
Granite dust	6%

Sulphur

Elemental Sulphur	100%
Potassium Sulphate	18%
Gypsum	17%
Manures	0.1 – 0.2

Organic Nutrients

Calcium

Calcium Carbonate (lime)	30-40%
Gypsum	22%
Dolomite	22%
Rock Phosphate	16-30%

Organic Nutrients

Calcium

Calcium Carbonate (lime)	30-40%
Gypsum	22%
Dolomite	22%
Rock Phosphate	16-30%

Organic Nutrients

Trace Elements

- Rock Dusts basalt, granite, rock phosphate, gypsum, lime and dolomite contain a wide range of trace elements.
- Compost
- Soluble forms are allowed to correct a recognised deficiency, ie zinc sulphate, sodium borate, copper sulphate, iron sulphate etc.
- Manures
 - Seaweed
- Fish emulsion

Nutrition for Crops

Amount of nutrient needed

- ([recommendation] [soil test level]) x 2
 [amount of nutrient you need apply] kg/ha
- [2 is a conversion factor based on 150 mm of soil depth]
- Get soil test in ppm (Parts per million) = mg/kg

Nutrition for Crops

Amount of Organic Fertiliser to apply

- Units of the nutrient ÷ % concentration of nutrient in fertilizer
- = amount of fertiliser to be applied to the paddock per ha

Nutrition for Crops

Example: Calcium

- Soil test indicates 1000 ppm
- Recommendation is 1800 ppm
- (1800 1000) x 2 = 1600 units of Ca needs to be applied
- Gypsum contains 22% Ca
- 1600 Ca ÷ 0.22 = 7,270 kg/ha = 7.3 t/ha Gypsum to be applied
- Lime contains 33% Ca
- 1600 Ca ÷ 0.33 = 4,850 kg/ha = 4.85 t/ha Lime to be applied

Eco-intensification Agroecology

Biodiversity

 'Organic agriculture has demonstrated its ability to not only produce commodities but also to "produce" biodiversity at all levels.' Food and Agriculture Organization of the United Nations (FAO 2003)

Eco-intensification Soil Biology

Biodiversity

 'Organic agriculture has demonstrated its ability to not only produce commodities but also to "produce" biodiversity at all levels.' Food and Agriculture Organization of the United Nations (FAO 2003)

Nutrition for Crops

COMPOST

- Humus: Inoculates soil with humus building microorganisms
- Beneficial micro-organisms
- Suppresses soil pathogens
- Detoxifies poisons
 - Feeds plants and soil life
- Builds soil structure

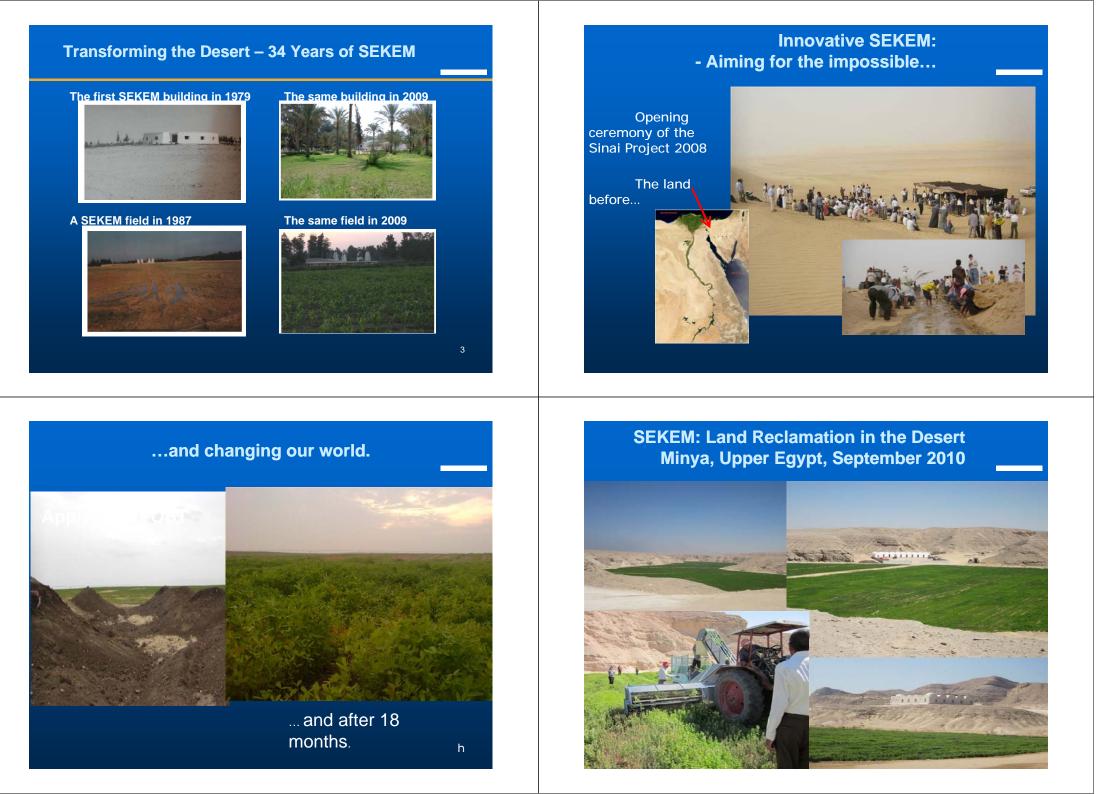
Composting Methods

Sheet composting

- Cover crop or crop residue spread with fresh manure and then cover crop sown and composting process occurs in soil.
- One advantage is very little nutrients are lost through leaching or volatisation.

The risk is residual chemicals in manure such as, drenches, tickicides, Atrazine, antibiotics etc. that can interfere with breakdown and weed seeds germinating.

Composting Methods


Aerobic compost

- Ideal C:N ratio 25 35 : 1
- Moisture 60% at point of making (when squeezed hard moisture appears on outside of bolus)
- Temperatures that reach up to 70 degrees C.
- Constant supply of oxygen by turning at least weekly
- Well mixed
- Piles up to 2mtrs. high with 45 60 degree slump angle.
 Addition of high pH rock dusts such as lime and dolomite cause nitrogen losses

Composting Methods

Techniques to improve compost

- Add worms (especially local soil worms) to digest and aerate - there is no need to turn.
- Add sticks, wood and coarse material. The lignin makes better humus
- Cover with wood chips, broken sticks and coarse material to prevent loss of methane, ammonia and nitrous oxide (nitrogen loss)
- Add subsoil clay to prevent ammonia and potassium losses

Eco-intensification Agroecology

- Full sun systems. Phase of establishment with plantains as temporary shade.
- Agroforestry system with shade leguminous trees,
- Successional agroforestry system with the same shade trees of the agroforestry treatment and in addition natural regeneration and crops
- Taking into account natural plant species succession, the high turn over of carbon typical for the conditions of humid tropics, self regulation processes with high biodiversity, to use all storeys and provide as much as possible ecosystem services beside the cocoa production.

Eco-intensification Agroecology

... using high diversity nature for promoting beneficial insects and combating pests.

... spraying extracts of plants and other natural compounds against pests and diseases.

... using robust varieties.

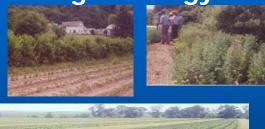
Eco-intensification Agroecology

Insectaries

Refuges Created by Strip Mowing

Insectaries

Borders of flowers create refuges for beneficial insects


Eco-intensification Agroecology

Eco-intensification Agroecology_

Insectaries Perimeter plantings acts as barrier for pests and windbreaks

4 Rows of multiple crops in rotation

Eco-intensification

Living Mulch

Conserves water

•Maximises solar capture

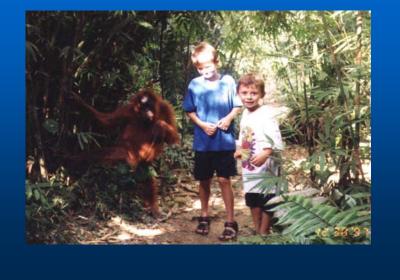
•Fixes nitrogen and soil carbon

•Flowers attract beneficial insects

Eco-intensification

Maximises solar capture

Fixes nitrogen and soil carbon


Flowers attract beneficial insects

Conclusion

A large body of published science shows: •Organic agricultural systems can ameliorate Climate Change •reduce greenhouse gases •sequester carbon into the soil •use less water •reduce soil erosion and nutrient run off •no chemical run off •more resilient in adverse weather events •achieve good yields of high quality produce

Thank You

