Solar technologies in North Africa: Potentials and targets of local manufacturing

Christoph Kost
Fraunhofer Institute for Solar Energy Systems ISE,
Freiburg, Germany

This presentation is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the view of the United Nations.
Solar technologies in North Africa: Potentials and targets of local manufacturing

Christoph Kost
Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany

Geneve, 13.06.2013
www.ise.fraunhofer.de
Local Manufacturing Potential of CSP projects in MENA Analysis for World Bank 2010

1. Results of the study

2. General findings: Local manufacturing of solar technologies in MENA

(available for download)
Solar technology targets in North Africa

Source data: own research; underlying radiation map: (Dii and Fraunhofer ISI, 2012)
Assessment of local manufacturing of CSP in North Africa

Countries in focus of the study for the World Bank in 2010:
Algeria, Egypt, Jordan, Morocco, Tunisia

Main objectives of the study:

1. Provide an overview of manufacturing processes, costs and cost reduction potential for key CSP components

2. Assess the potential for a CSP manufacturing industry in the MENA region

3. Establish roadmaps and an action plan for the development of local CSP manufacturing in MENA

4. Analyze potential economic benefits of a CSP component manufacturing industry in MENA
1. Step: Local and international participation in completed CSP projects

![Graph showing local share of investment in completed CSP projects]

- Local share of investment:
 - Plant I (local)
 - Plant II (local)
 - Reference (total)

- Breakdown of investment:
 - Labor
 - Cost Site and Solar Field
 - Equipment Solar Field and HTF System
 - Thermal Storage System
 - Conventional Plant Components and Plant System
 - Others
 - Total

- Key percentages:
 - Steel structure: 18%
 - EP C: 43%

© Fraunhofer ISE
2. Step:
Global CSP value chain: What are the opportunities for local companies?

<table>
<thead>
<tr>
<th>Core value chain</th>
<th>Project Development</th>
<th>Materials</th>
<th>Components</th>
<th>Plant Engineering & Construction</th>
<th>Operation</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements of the core value chain</td>
<td>Concept Engineering</td>
<td>Concrete</td>
<td>Mirrors</td>
<td>EPC-Contractor: Detailed Engineering</td>
<td>Operation & maintenance of the plant</td>
<td>Utility</td>
</tr>
<tr>
<td></td>
<td>Geographical Determination</td>
<td>Steel</td>
<td>Mounting Structure</td>
<td>Procurement</td>
<td>Transport & distribution of electricity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Determination of general requirements</td>
<td>Sand</td>
<td>Receiver</td>
<td>Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glass</td>
<td>HTF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silver</td>
<td>Connection piping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Copper</td>
<td>Steam generator / heat exchanger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salt</td>
<td>Pumps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other chemicals</td>
<td>Storage System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Power Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grid connect.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis of the CSP value-chain:
- Identification of current market players
- Review of production processes
- Cost analysis / cost reduction potential
- Complexity assessment for components
Evaluation of component manufacturing

Figure: Results of the industry survey on potential of local manufacturing
(Normal = status, italic = medium target)
Local market demand is often below typical production sizes of components

► Examples of market thresholds for investments in manufacturing facilities

<table>
<thead>
<tr>
<th>Components of the value chain</th>
<th>Annual output of a typical factory (MW/year)</th>
<th>Investment per factory (in Mio €)</th>
<th>Jobs per factory (Jobs p.a.)</th>
<th>Specific Jobs (Jobs/MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver</td>
<td>200 – 400 MW p.a.</td>
<td>40 Mio €</td>
<td>140 Jobs</td>
<td>0.3 – 0.7</td>
</tr>
<tr>
<td>Mirrors</td>
<td>200 – 600 MW p.a.</td>
<td>30 Mio €</td>
<td>300 Jobs</td>
<td>0.7 – 1.5</td>
</tr>
<tr>
<td>Steel structure</td>
<td>50 – 200 MW p.a.</td>
<td>10 Mio €</td>
<td>70 Jobs</td>
<td>0.3 – 0.5</td>
</tr>
<tr>
<td>HTF</td>
<td>Very high</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
3. Step:
Competitive advantages and weaknesses of CSP value chain in MENA

- Small market size
- Fiscal, institutional and legislative framework
- Insufficient training of workforce and availability of skilled workers
- Lack of awareness
- Market competition

+ Low labor cost
+ Short distance to Europe
+ First experience
+ Political will to develop a local RE technologies industries
+ High growth in the electricity demand => new capacity required
4. Step: Calculation of local potentials and job creation

RE Technologies Market Development Model (RETMD)

Inputs
- Data research
- Expert interviews
- Competitiveness factors
- Market scenarios

Decision Parameters
- Status quo in projects
- Know-how (component)
- Know-how (countries)
- Factory specifications
- Market demand & Forecast
 Installed capacity per technology/component
- Technologies
 - Reference plant
 - Layout and capacity
 - Construction and operation
 - Technology parameter
 - Cost structure
 - Cost projection (learning curve)
 - Employment rates

Decisions
- Continuous increase
- Max./Min. potential

Results
- Qualitative decision per component
- Quantitative decision per component

Potential of local value creation (PLVC)
- RETMD output
 - Annual revenues
 - Annual FTE jobs
Potential local participation during construction of CSP plants

Local share of value generation during construction in %

- Scenario: BAU
- Scenario: Moderate
- Scenario: Ambitious
- Scenario: Moderate - North Africa cooperation

Source: C. Kost et al. (2012), Value generation of future CSP projects in North Africa

© Fraunhofer ISE
Potential local participation during construction of CSP plants

Local share of value generation during construction in %

- Scenario: BAU
- Scenario: Moderate
- Scenario: Ambitious
- Scenario: Moderate - North Africa cooperation

Source: C. Kost et al. (2012), Value generation of future CSP projects in North Africa
Potential local participation during construction of CSP plants

Larger market and regional integration facilitate local manufacturing

Source: C. Kost et al. (2012), Value generation of future CSP projects in North Africa

© Fraunhofer ISE
Part 2:
General discussion
Why are renewable energy technologies specific?

- Energy investments represent a high share of national infrastructure investments (limited budgets)
- Monopolistic market structure in energy markets
- Subsidies still required
- Market still in early market stage: Market depends on projects, no stable market demand
- Large power plants instead of dezentralized, small projects

Problems:
- Job creation during construction/manufacturing, not during operation
- Local demand of jobs vs limited industry capabilities/know-how
- But: Prices for high-tech goods or skilled worker relatively high
- Small R&D spendings
International influence on local markets and local industries

- Increasing competition in global RE market
- Some market distortions (over-supply, limited projects)
- Tender system supported by international donors (specific requirements)
- High technical requirements in tender systems
- Need of reference projects
- High technology standards
How to create local markets and industries in smaller countries?

- Stable markets (high important)
- Avoid stop-and-go in local markets
- Define clear project roadmaps
- Define regulatory framework
- Reduce RE project sizes
- Find niche markets, focus on certain technologies
- Regional integration: Specialization and synergies
- Avoid high requirements of local content, better: continuous industry development
Thank you very much for your attention!

Fraunhofer-Institute for Solar Energy Systems ISE

Largest European solar energy research institute
>1200 members of staff (incl. students)

Areas of business:
- Silicon Photovoltaics
- Photovoltaic Modules and Systems
- Alternative Photovoltaic Technologies
- Solar Thermal Technologies
- Renewable Power Generation
- Applied Optics and Functional Surfaces
- Hydrogen Technology

10% basic financing
90% contract research
45% industry, 45% public
€ 73 M total budget (2011)
> 10% p.a. growth rate

Contact: Christoph.Kost@ise.fraunhofer.de
Thank You Very Much for Your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Download of study under press releases of ise.fraunhofer.de

Christoph Kost

Christoph.Kost@ise.fraunhofer.de
www.ise.fraunhofer.de
High amount of jobs during construction and installation

- Labor Cost Site and Solar Field: 63%
- Equipment Solar Field and HTF System
- Thermal Storage System
- Conventional Plant Components and Plant System
- Other Project Costs
- Total: 100%