Multi-year Expert Meeting
on Transport, Trade Logistics and Trade Facilitation:

Transport and logistics innovation
towards the review of the Almaty
Programme of Action in 2014

22-24 October 2013

USING A STRATEGIC DECISION MAKING TOOL TO
DESIGN AND OPTIMIZE SUPPLY CHAIN NETWORKS
(A BEST PRACTICE IN GLASS RECYCLING)

by

Mr. Aurélien Levieux
Engineer
(Institute for logistics) of Le Havre University, ISEL

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the view of the United Nations.
USING A STRATEGIC DECISION MAKING TOOL TO DESIGN AND OPTIMIZE SUPPLY CHAIN NETWORKS
(A BEST PRACTICE IN GLASS RECYCLING)

CNUCED Presentation
-
October, 23rd 2013

ISEL, a school unique in France

✓ ISEL, school of logistics is the only public engineering institute in France in the field of logistics

✓ Some figures:
 – School founded in 1994
 – 465 graduated engineers
 – 212 students (2013/2014)
 – 40% women
 – Around 50 new graduates each year
 – 95% graduates under contract in less than 6 months
 – ISEL 800 program: double the number of students by the coming years
ISEL, a school unique in France

- ISEL has numerous foreign partner institutions, both European (Socrates/Erasmus programme) and worldwide

- ISEL has also 2 main partnership agreements with the universities of Hull (UK) and Magdeburg (Ger)

- A specific entity, Comptoir of Logistics (value-creation entity)

Comptoir of logistics

- Comptoir of Logistics:
 - Project engineering
 - 14 colleagues
 - 3 main competences:
 • Modeling/simulation
 • Supply Chain trade skills diagnosis (Audit)
 • Major projects and cooperation

- Construction of decision making tools

- We design both strategic (network optimization) and operational (process/flow optimization) models
Modeling and simulation

✓ Modeling is a symbolic representation of some aspects of an object or a real phenomenon

✓ Simulation enables to develop a model and to test different configurations (time, spatial configuration, ...) under different constraints
CAST Aurora: a strategic support tool for Supply Chain planning

✓ Interests:
 - To gain insight
 - To quantify relationships
 - To optimize
 - To generate and evaluate options
 - To test sensitivities
 - To remove emotion and politics
 - To adopt a rigorous process
 - To provide a point of expertise...

✓ Results:
 - Network Optimization
 - Warehouse positioning
 - Transport Mode selection
 - Supply & Demand allocation
 - Carbon optimization

✓ Consider all elements of the Supply Chain in a single, integrated model

Modeling and simulation – Methodology

1: Project definition, objectives
2: Flow diagrams, mappings...
3: Technical data, key variables, constraints
4: Perimeter, functionalities, elements...
5: Data analysis (folding, deleting, combining...)
6: Study period, units, rules and constraints
7: Model design
8: Model implementation → Simulation run
9: Assumption tests (analysis and recommendations)
Partners

AUTOMOTIVE GLASS RECYCLING
Context and objective

Context

European regulation: from 2015, 95% of the total weight of an End of Live Vehicles (ELV) should be re-used / recycled.

Concerning this issue, France is not a model in Europe: only 81% of an ELV is be re-used / recycled.

Automotive glass is not recycled and is representing 3-4% of the total weight...

Objective

Establish a profitable network for glass collecting and recycling of the French manufacturer Renault

Partners

Industrials

Engineering schools

Association

Public partners
ISEL objective

Create a decision making tool to size and define the cost of the collecting, storage and distribution network of reusable glass in France (including carbon footprint)

Actors of the supply chain

- Glass deposits
 - Car crushers
 - Car dealership
 - Windscreen repairer (Carglass, France Pare brise...)

- Collection platforms
 - Sita platforms
 - Renault platforms...

- Glass reprocessing sites

- Transportation companies
Model presentation – Main figures

- 3,615 collection points → 2,172 locations
- 52,571 tons of glass (24 kg/VHU)
- 142 collection platforms
- “6 customers” (glass demand)
- 4 different transportation vehicles

Résults

Base case

<table>
<thead>
<tr>
<th>Scénario</th>
<th>Number of tons</th>
<th>Collection</th>
<th>Platforms</th>
<th>Transfer</th>
<th>Total</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case</td>
<td>51,769 t</td>
<td>98 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Confidential data
Examples of scenarios

✓ Increase of the number of platforms

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Number of tons</th>
<th>Collection</th>
<th>Platforms</th>
<th>Transfer</th>
<th>Total</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmentation du nombre de plateformes</td>
<td>51 797 t</td>
<td>98,5 %</td>
<td>Confidential data</td>
<td>-11%</td>
<td>-10%</td>
<td></td>
</tr>
</tbody>
</table>

✓ Existing platforms relocation

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Number of tons</th>
<th>Collection</th>
<th>Platforms</th>
<th>Transfer</th>
<th>Total</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relocalisation des plateformes</td>
<td>51 797 t</td>
<td>98 %</td>
<td>Confidential data</td>
<td>-15%</td>
<td>-47%</td>
<td></td>
</tr>
</tbody>
</table>

✓ Use of new transportation companies (higher capacity vehicles)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Number of tons</th>
<th>Collection</th>
<th>Platforms</th>
<th>Transfer</th>
<th>Total</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nouveaux transporteurs pour le transfert (25 à 27 tonnes)</td>
<td>51 769 t</td>
<td>98 %</td>
<td>Confidential data</td>
<td>-14%</td>
<td>-19%</td>
<td></td>
</tr>
</tbody>
</table>

Average cost VS. % of collection

![Graph showing average cost versus % of collection for existing and relocated platforms](image)
Conclusions of the study

✓ Conclusions
 • The number and the location of each actor of the supply chain have a strong impact on the total cost
 • It is necessary to consider several key variables to reach the objectives of the project
 • It is important to gather products (minimize number of platforms) to decrease significantly logistics costs

✓ The use of CAST can be adjustable depending on your needs

✓ Importance of the size of the network and the granularity of the model

Thank you for your attention

Institut Supérieur d’Études Logistiques
Quai Frissard – B.P. 1137
76063 LE HAVRE CEDEX

Tel.: +33 2 32 74 49 00
Fax: +33 2 32 74 49 11

Email: isel@univ-lehavre.fr