“Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in Caribbean SIDS”

Perspectives on Climate Change and Disaster Risk Management in Coastal Transport Infrastructure in the OECS

By

Crispin d’Auvergne

Organisation of East Caribbean States Commission (OECS)
Saint Lucia

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the views of the UNCTAD.
PERSPECTIVES ON CLIMATE CHANGE AND DISASTER RISK MANAGEMENT IN COASTAL TRANSPORT INFRASTRUCTURE IN THE OECS

UNCTAD National Workshop Saint Lucia “Climate Change Impacts and Adaptation for Coastal Transport Infrastructure in Caribbean SIDS”, 24th – 26th May 2017

E. Crispin d’Auvergne, Organisation of Eastern Caribbean States (OECS) Commission

THE ORGANISATION OF EASTERN CARIBBEAN STATES (OECS)
SEA PORTS IN THE OECS

• Caribbean sea ports are effectively segregated into three categories:
 o global hub ports,
 o sub-regional hub ports
 o service ports
• All OECS (main) ports fall into the latter category
• There are also smaller ports and terminals serving, among others:
 o yachts
 o small fishing vessels
 o ferries

AIRPORTS IN THE OECS

• Airports in the OECS fall into the following categories:
 o International/Regional
 o Regional/Domestic
 o Private
AIRPORTS IN THE OECS

<table>
<thead>
<tr>
<th>MEMBER STATE</th>
<th>NUMBER OF AIRPORTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anguilla</td>
<td>1</td>
</tr>
<tr>
<td>Antigua & Barbuda</td>
<td>3</td>
</tr>
<tr>
<td>British Virgin Islands</td>
<td>4</td>
</tr>
<tr>
<td>Dominica</td>
<td>2</td>
</tr>
<tr>
<td>Grenada</td>
<td>3</td>
</tr>
<tr>
<td>Martinique*</td>
<td>1</td>
</tr>
<tr>
<td>Montserrat</td>
<td>1</td>
</tr>
<tr>
<td>St. Kitts and Nevis</td>
<td>2</td>
</tr>
<tr>
<td>Saint Lucia</td>
<td>2</td>
</tr>
<tr>
<td>Saint Vincent and the Grenadines</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
</tr>
</tbody>
</table>

VALUE & CONTRIBUTION OF AIR & SEA PORTS

- Passenger arrivals/departures
- Goods import and export
- Goods storage
- Revenue collection (“35 vs <4”)
- Direct employment
- Support for key economic sectors, including: tourism, commerce, agriculture
- Support FDI
- Support food security
- Provide a link to the outside world
ECONOMIC CONTRIBUTION OF AIR TRAVEL: FDI (2009)

FDI stock as % GDP

Source: IATA, Oxford Economics in Oxford Economics 2011

ECONOMIC CONTRIBUTION OF AIR TRAVEL/TOURISM (2009)

Antigua & Barbuda: 13.1% of GDP
Saint Lucia: 32.5%
Grenada: 17.1% of GDP

Source: Oxford Economics, 2011
CLIMATE CHANGE THREATS

- Storms
- Sea Level Rise
- Coastal Flooding
- Elevated Temperatures
- Drought

World Ports & Tropical Cyclones 1990-2008
Source: Becker et al 2011
EXPOSURE

• All sea ports at risk by virtue of location
• Several airports at risk due to location near the sea and/or in flood-prone locations, e.g.:
 • Hewanorra and GFL Charles, Saint Lucia
 • Douglas-Charles, Dominica

OECS RESPONSE TO DATE

• Few climate-focused structural measures have been implemented to date and sometimes reactive:
 • Port Zanté cruise ship terminal, Saint Kitts & Nevis (3rd time around)
 • New cruise ship berth at Pt. Seraphine, Port Castries?
 • Argyle International, Saint Vincent & Grenadines?
 • Study for Hewanorra International, Saint Lucia
OECS RESPONSE TO DATE

• Photovoltaic installations at:
 o Robert Bradshaw Airport, St. Kitts
 o V. C. Bird International, Antigua
 o Argyle Airport, St. Vincent

CHALLENGES

• Planning horizon for port development typically 5-10 years while lifespan of infrastructure much longer (30-50 years for seaports).
• Many OECS sea ports constructed when CC was not a serious consideration
• Transport infrastructure development is costly
• Air and sea ports often heavily reliant on external utilities (water, electricity)
• Roads and bridges connecting to airports are often themselves vulnerable
APPROACHES TO BUILDING RESILIENCE

- Adopt longer planning horizons for port development
- Use appropriate science in planning and design
- Site new air and sea ports to minimise climate risk
- Reduce reliance on external utilities through improved water storage, energy efficiency and use of renewable energy
- Design and build/rebuild in support infrastructure (roads, etc.)
- Diversify transport options to the extent possible (e.g. ferry services)
- Develop continuity-of-business (COB) plans

PARTING MESSAGES

- Air and sea transport are vital to the socio-economic wellbeing of OECS Member States and the absence of alternative forms of international connectivity underscores the importance of associated infrastructure

- Climate change poses significant risks to coastal transport infrastructure

- Opportunities exist for building resilience in coastal transport infrastructure

- Building resilience will require a non-traditional, long-term and holistic approach

- Proactive adaptation more cost-effective than reactive measures
THANK YOU