Charcoal briquetting from Agriculture Biomass Waste

By

Michael Kapembwa, National Institute for Scientific and Industrial Research Materials and Minerals Research Centre, Zambia

The views expressed are those of the author and do not necessarily reflect the views of UNCTAD.
Charcoal briquetting from Agriculture Biomass Waste

Michael Kapembwa

2019 National Institute for Scientific and Industrial Research
Materials and Minerals Research Centre
Contents

1. Introduction
2. Value Addition of Cotton Waste
3. Aims and Objectives
4. Methodology
5. Outputs and Research Challenges
Introduction

- Zambia’s energy needs have continued to increase
- Wood and charcoal still play a major role in meeting the energy needs
- Wood fuel contributes 68% of Zambia’s energy consumption \(^1\)
- 82% of the Zambian population use biomass from wood for cooking \(^1\)
- Charcoal production employs an estimated 40,000 people in the sector \(^2\)
- This has contributed to the high rates of deforestation
- Deforestation contributes towards the average annual loss of over 300,000 ha of woodland \(^3\)

Introduction

- Forests play an important ecological role and help mitigate climate change.
- Effect of deforestation on the climate and eco-system can have far reaching devastating impacts on many social and economic activities.
Value Addition of Cotton Waste

Zambia has 42 million ha cultivatable land and 14% is currently utilized.

The agricultural sector and agro-processing accounts for about 40% of the GDP contributes about 80% of total employment in Zambia (formal and informal). Cotton production and processing is part of this positive achievement making up about 15% of this.

In Zambia for every hectare of cotton a farmer harvests from the field, three metric tons of cotton stalks are left in the field.¹

Due to the phytosanitary regulation which requires farmers clear and burn cotton stalks, about 372,000 metric tons of cotton stalks go to waste every year country wide.²

Cotton stalks can be used to make paper, particle board and corrugated

In this project, cotton stalks have been identified as a possible feedstock for charcoal briquettes

¹ Central Institute for Research on Cotton Technology (CIRCOT) - Mumbai, India, Utilisation of Cotton by-Products for Value Added Products, 2005
² Chitah, K, Cotton and Its by-products Sector In Zambia 2016
Aims and Objectives

The aims and objectives of this project are to

• Investigate and identify suitable feedstock
• Investigate and identify suitable binders and their effect on product quality
• Optimize the pyrolysis process by identifying suitable operating conditions
• Optimize product quality by identifying suitable blending options of biomass feedstock
• The aim is to develop an alternative fuel product that can compete with charcoal (from cut down trees) which is affordable with the goal to reduce deforestation

• **Part of 7NDP is to promote the development of renewable and alternative sources of energy such as solar, wind, biomass and nuclear as a way of diversifying the energy mix**

It is expected that small scale farmers, small and medium scale enterprises and communities across the country will benefit by supplying feedstock and participating in the production of charcoal from agriculture and forestry waste
Methodology

- Research Methodology and Key Questions

1. How does blending of feedstock affect fixed carbon, volatile matter, ash content, moisture content, and the calorific value?
2. Does the type and dosage of binders affect the properties of charcoal briquettes?
3. Does blending of feed material before pyrolysis and blending of feed material after pyrolysis result in different properties of charcoal briquettes?
4. What is the effect of pyrolysis temperature, heating rate and residence time on blended biomass?
5. What is the effect of fixed carbon, volatile matter, ash content, moisture content and the calorific value on burning characteristics i.e. the ignition and combustion?
Research Challenges

Challenges

- Sufficient and uninterrupted supply of feedstock
- High Energy Use during briquette drying
- Comparatively, charcoal briquette may be more expensive than ordinary charcoal
- Inefficient kilns for pyrolysis resulting in smoke emissions, energy loss and ash production

Proposed Interventions

- Bulk Stocking
- Involvement of farmers and SME’s for supply
- Process optimization
- Sun drying during sunny times
- Process optimization
- Identification/design of efficient kilns
The biggest threat to African Growth is Climate Change

Paul Polman