Coastal Transportation Infrastructure in the Caribbean – An Economic Context

By

Willard Phillips

UN-ECLAC Subregional Headquarters for the Caribbean, Trinidad and Tobago

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the views of the UNCTAD.
COASTAL TRANSPORTATION INFRASTRUCTURE IN THE CARIBBEAN – AN ECONOMIC CONTEXT

UNCTAD National Workshop Jamaica
"Climate change impacts and adaptation for coastal transport infrastructure in Caribbean SIDS", May 30 – June 01, 2017

Willard Phillips
ECLAC

INTRODUCTION

- Airport Infrastructure
- Sea transport Infrastructure
- Economics: Contribution, Costs and Markets
- Regional Context – Integration of systems and markets
- Risk and Resilience
- ECLAC’s Efforts
ECONOMIC CONTEXT – GENERAL CHARACTERISTICS (LAC)

- In global terms, LAC airports are smaller
- Have fewer aircraft movements
- Handle smaller cargo volumes
- Have greater reliance on international passengers for financial viability
- Great heterogeneity among regional airports
- Situation is even more limiting in the Caribbean

Source: Serebrisky, 2012
ECONOMIC CONTEXT

- Airports are critical to tourism business in the Caribbean
- Tourism contributes between 10% and 75% of GDP for most destinations
- Tourism employment - 8% - 80%

Source: WTTC, 2015
CARIBBEAN SEAPORTS

Typically three types –
- Cargo – commercial/industrial
- Cruise
- Marinas
ECONOMIC CONTEXT – SEA PORTS

- Seaports are critical to trade
- Also tourism business in the case of Cruise tourism
- Capital Investments include Commercial Ports, Cruise Terminals, and Marinas

Source: ECLAC, 2015
ECONOMIC CONTEXT – SEA PORTS

Cruise Passenger Arrivals, 2014

Source: CTO, 2015

REGIONAL CONTEXT

Atlantic Ocean

Caribbean Sea

US & British Virgin Islands

The Bahamas

Cayman Islands

Panama

Trinidad and Tobago

Source: Bareboats 2001
REGIONAL CONTEXT

- Large number of very small markets imply high fixed cost per capita for transportation infrastructure
- Limited scope for economies of scale
- Limited opportunities for PPP in infrastructure developments
- Results in inefficient intra regional transportation systems in terms of costs and time

RISK AND RESILIENCE

- Increased frequency and intensity of natural events means greater risks of infrastructure loss
- Higher risk coverage costs, and costs to invest
- Greater need for infrastructure redundancy investment
- Implications for integrating air and maritime transportation
ECLAC’S EFFORTS

- Assessment of Economic Impact of Climate Change on the transportation sector
- Demand Model for Maritime Passenger Transportation
- Recreational Demand for Yachting Services

ECLAC’S EFFORTS

IMPACT OF CLIMATE CHANGE ON TRANSPORTATION SECTOR

Projections - Impact of Temperature and Precipitation on Transport Expenditure in Barbados - B2 - US$ Millions

- Air Transportation
- Maritime Transportation
- Total International Transportation

Source: ECLAC, 2011
ECLAC’S EFFORTS
DEMAND MODEL FOR MARITIME PASSENGER TRANSPORTATION IN THE CARIBBEAN

- Demand Model estimated using unbalanced panel data set for 15 destinations for period 2000 - 2014
- Significant Variables:
 - Real fare of service (Elasticity: -1.17% to -0.91%)
 - International economic activity (Elasticity: 1.5%)
 - Number of Passengers arriving by Air (Elasticity 0.27% - 0.30%)

Source: ECLAC, 2013

ECLAC’S EFFORTS
DEMAND MODEL FOR YACHTING AND MARINA SERVICES IN THE CARIBBEAN

- Recreational Demand Model estimated for OECS countries
- Significant Variables:
 - Corporate Profits in source markets (Elasticity: -0.83)
 - Airline jet fuel price (Elasticity: -0.58)
 - Frequency of hurricanes (Elasticity -0.07)

Source: ECLAC, 2013
THANK YOU