The Future of Employment in a Digital World: Industrial and Education Policy implications

Geneva, 19 of March, 2018

Aguinaldo N Maciente
Labor Studies Coordination
Social Studies Division
Presentation outline

• **Production** in a digital world
 • Industry 4.0
 • Challenges for firms

• **Employment** in the digital world
 • Tasks, skills and occupations
 • Challenges for workers

• **Industrial and education policies**
 • Traditional features
 • Needed features
 • Challenges to developing countries

• Concluding remarks
The Digital World will reshape production & distribution

• Industry 4.0
 • Cyber-physical systems
 • **Cognitive computing**: self-awareness, self-organizing, decision-making capabilities
 • **Virtualization**: sensing, monitoring and maintenance capabilities
 • Cloud computing
 • **Internet of Things**: connectivity, identifiability, interoperability and security
 • **Big data algorithms**: real-time process, engineering and information representation capabilities
The Digital World will reshape production & distribution

- Industry 4.0 technologies
 - Internet of Things
 - Smart sensors and actuators
 - Connectivity, interoperability, authentication & security protocols
 - Cyber-physical systems
 - Cognitive and in-network computing: self-aware, self-organizing, decision-making capable components and systems
 - Virtualization: real-time process, engineering and information representation capabilities
 - Cloud computing
 - Big data analytics & algorithms
 - Convert data flows into information flows
 - Customer interaction and profiling
Challenges for firms

• End-to-end integration
 • Vertical and horizontal value chain integration
 • Focus on core competencies
 • Join partner ecosystems
 • Share operative information
 • New business models

• Smart, customized products and data-driven services
 • Developed new and tailored customer relationships
Challenges for firms

• Human beings as the drivers of value added
 • Manage HR strategically
 • Promote learning culture and learning fitness
 • Design goal-oriented training programs
 • Build collaborative environment
 • Foster flexible and attractive working conditions
The Digital World will reshape labor & education

• Some Jobs will be replaced

• Most Jobs will be reshaped
 • Task composition
 • Skills & ability requirements
 • Education levels and knowledge fields
 • Vocational training & in-job learning requirements
Jobs have always been disappearing

Town criers

Switchboard operators

Source: Wikimedia Commons
Jobs will continue to disappear

Taxi Drivers

Newsstand vendors

Source: Hans Vivek on Unsplash

Source: Wikimedia Commons
Jobs will continue to disappear

Policy analysts?

Source: United Nations
Which jobs are at risk?

Autor, Katz, Kearney (2006); Autor (2013)

• Jobs with a larger share of routine tasks
 • Can be broken down into a series of predictable steps and decision processes
 • Are more easily replaced by automated equipment and software solutions

• Routine tasks can be cognitive or manual
 • Cognitive: Operate and monitor production (e.g., quality control)
 • Manual: Operate machinery and control production pace

➢ Non-routine cognitive and manual tasks will continue to exist and develop
Skill needs (OECD, 2017)

Most needed skills
• Language usage
• Learning, listening, teaching
• Decision-making
• Time-management
• Systems evaluation
• Science & mathematics

Least needed skills
• Repairing
• Maintenance
• Operation & control
• Installation
• Quality control
• Management of resources

➢ Cognitive skills
➢ Routine skills
<table>
<thead>
<tr>
<th>Most needed fields</th>
<th>Least needed fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Computers & electronics</td>
<td>• Mechanical</td>
</tr>
<tr>
<td>• Education & training</td>
<td>• Construction</td>
</tr>
<tr>
<td>• Wealth</td>
<td>• Food production</td>
</tr>
<tr>
<td>• STEM fields</td>
<td>• Production & processing</td>
</tr>
<tr>
<td>• Communications & media</td>
<td>• Transportation</td>
</tr>
<tr>
<td>• Administration</td>
<td></td>
</tr>
</tbody>
</table>

Knowledge needs (OECD, 2017)
Ability needs (OECD, 2017)

<table>
<thead>
<tr>
<th>Most needed abilities</th>
<th>Least needed abilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Verbal</td>
<td>• Body flexibility & coordination</td>
</tr>
<tr>
<td>• Analytical</td>
<td>• Physical strength</td>
</tr>
<tr>
<td>• Quativative</td>
<td>• Manual dexterity</td>
</tr>
<tr>
<td>• Memory</td>
<td>• Time reaction & speed</td>
</tr>
<tr>
<td>➢ Cognitive abilities</td>
<td>➢ Physical & manual abilities</td>
</tr>
</tbody>
</table>

OECD, Organisation for Economic Co-operation and Development
Challenges for workers

Jacobs, Kagermann & Spath (2017)

- Lifelong learning skills
 - Ageless training mentality
 - Career planning skills
 - Autonomy and self-reliance

- Collaboration skills
 - Cross-functional
 - Beyond company boundaries
• Will traditional policies keep up with these transformations?
 • Recent Brazilian experience and trends
 • What not to do!

• Challenges for developing countries and regions
 • What to do?
Industrial policies in Brazil (2004-2013)

• Subsidized financial support
 • Benefits to established, powerful economic groups

• Focus on manufacturing
 • Commodity-based and/or foreign-owned companies

• Local incentives
 • Amazon special economic zone
 • Maquiladora-style electronics manufacturing
 • Fiscal wars
 • States compete to offer attractive local tax exemptions
 • Financial exhaustion
Industrial policies in Brazil (2004-2013)

• National content requirements & high import taxes
 • Costly components
 • No global value chain integration
 • No path to competitiveness
 • Low production scales

• South-South cooperation
 • Didn’t advance beyond exporting mineral and agricultural commodities

• No articulation with education and training policies
 • Economic growth of the earlier 2010’s plagued by the shortage of skilled labor
Education and training policies in Brazil

- Low effectiveness of education spending
 - Regional imbalances and heterogeneity
 - Low accountability
 - Low investments in teacher training
 - Insufficient focus on student achievement

- Imbalance between primary and secondary, versus tertiary education
 - Low investment in primary & secondary public education harms low-income students
 - High investments on tertiary public education favors high-income students
Education and training policies in Brazil

- Secondary & vocational education
 - Focus on 20th century skills
 - Deficient language, mathematics & science attainment

- Tertiary education and research
 - High-cost investment in scientific research
 - Few incentives to partner with private firms
Resulting skill trends in Brazil

Source: Maciente (2016)
Skills present at larger regions

Note: larger municipalities to the left of the horizontal axis
Source: Maciente (2013)
Skills present at middle-sized regions

Note: larger municipalities to the left of the horizontal axis
Source: Maciente (2013)
Skills present at smaller regions

Note: larger municipalities to the left of the horizontal axis
Source: Maciente (2013)
Education policies in developing countries

• Integration of economic and education policy goals
• Generalize basic reading, math and Science skills
• Special attention to educational attainment in
 • Rural and mineral producing regions
 • Large-city low-income population
• Create training opportunities and modular certification paths for adults workers
• Better integration between science investments and private-sector technological needs
Production policies in developing countries

• Focus on productivity, competitiveness and better job opportunities (regardless of sector)

• Search strategic opportunities in global value chains (regardless of region)

• Focused financial support
 • Data infrastructure
 • Logistics
 • Emerging players instead of established ones

• Attention to business regulations

• International dialogue on regulation, certification, standards, cyber security and property rights