Date Quality Assessment in Postharvest Processing

Sawsana Al-Rahbi and Hemantha Jayasuriya
Date Production in Oman

- 8th largest date producer in the world
- 7 million trees
- 250 varieties
- 82% total fruit crops
- 49% total agricultural land
Production • 276,400 tones

Export • 10,000 tones

Stored • 60 -70%
Nutrition

Insect infestation

Stored Dates

Poor Quality

Proceed & Packaged

Low Export

End result

Causes

Stored Dates → Insect infestations → Lower Nutrition

Poor Quality → Proceed & Packaged → Low Export
Date Quality
Standard grading based on physical properties

- **Size**: 10 pt
- **Color**: 20 pt
- **Shape**: 40 pt
- **Defects**: 30 pt

CODEX and U.S Standards for Grades of Dates
<table>
<thead>
<tr>
<th>Date Quality (Defects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blemishes</td>
</tr>
<tr>
<td>Damaged</td>
</tr>
<tr>
<td>Unripe Dates</td>
</tr>
<tr>
<td>Un-pollinated Dates</td>
</tr>
<tr>
<td>Dirt</td>
</tr>
<tr>
<td>Insects and mites</td>
</tr>
<tr>
<td>Scouring</td>
</tr>
<tr>
<td>Mould</td>
</tr>
<tr>
<td>Decay</td>
</tr>
</tbody>
</table>
Manual Inspection

- Laborious
- Inconstant
- Time consuming
- Costly
Date quality effects during harvesting and processing

Al Mabsili Date Stripping

Traditional – Manual Stripping

Mechanical Stripping
Date damage – postharvest handling

- **Damage by bruises and scratches**

 - Traditional Bicycle Exercise Machine Electric Motor
 - Percentage of damaged date (%)
 - 0 (b) 3.0 (a) 2.0 (a) 4.7 (a)

- **Date without calyx**

 - Test type
 - Percentage of date without calyx (%)
 - Traditional Bicycle Exercise Machine Electric Motor
 - 3 (b) 17.7 (a) 19.3 (a) 13.3 (b)

- **Date thrown by the machine**

 - Percentage of date thrown by weight (%)
 - Bicycle Exercise Machine Electric Motor
 - 0.57 (a) 0.56 (a) 0.51 (a)

All comparisons show a significant difference (P< 0.05).
Imaging techniques to evaluate defects

- Detect surface cracks on dates and classify them (Color Imaging)
- Classify dates based on hardness (Monochrome Imaging)
- Detect internal infestations in dates by saw-toothed beetle (X-ray Imaging)
The NIR/RGB/Monochrome imaging systems

Algorithm using RGB color imaging technique to classify defects

Technique to detect surface cracks on dates and classify them depending on the amount of cracks
Surface Cracks

- Tiny breaks
- Transverse
- Longitudinal
- Irregular

differ in varieties
How do cracks occur?

1. Date Mite (Goubar Mite)
 - Before harvest
 - Make cuts and feed on the fruit
 - Covers the fruit with a web
How do cracks occur?

Wet weather

High relative humidity

High rainfall
Method using RGB Imaging technique

- “Khalas” variety
- 315 sample from 2 date factories
- Color Camera (RGB)
Method using RGB imaging technique

- Image processing in Matlab software:
 - Image Segmentation
Method using RGB imaging technique

Image processing in Matlab software:

- Image Segmentation
- Features Extraction
 - Gray Intensity
 - Red, Green and Blue Intensities
 - Hue, Saturation, Value Intensities
 - **Threshold Area**: The area extracted by Threshold
 - **Masks Area**: The area extracted by combining HSV masks
 - **Threshold %**: The percentage of the area extracted by Threshold over the total area of the object
 - **Masks %**: The percentage of the area extracted by combining HSV masks over the total area of the object
Method using RGB imaging technique

- Statistical Analysis in SPSS Software
- Two cases:
 - 3 classes (high crack, low crack, no crack)
 - 2 classes (with cracks, without cracks)
- Classification Model
 - Linear Discriminant Analysis (LDA)
 - Stepwise LDA
Results

Three classes model

Two classes model
Conclusions

– The developed algorithm was able to classify the cracked dates in 3 classes with accuracy of **67.3%**

– The developed algorithm was able to recognize the cracked dates from healthy dates with accuracy of **84.4%**
Using monochrome imaging technique to classify date

Develop an algorithm using monochrome imaging technique to classify date based on hardness

(a) Soft Date (b) Semi-hard Date (c) Hard Date
Using monochrome imaging technique to classify date

- “Fardh” variety
- 1800 sample (60/class) from 3 date factories
- Hardness analysis using Texture Profile analysis (TPA)
- Moisture content in 105°C for 24 hours
- Monochrome Camera
Using monochrome imaging technique to classify date

- Image processing in Matlab software:
 - Image Segmentation
 - Features Extraction
 - **Histogram Features**: Mean gray value, Standard deviation, Variance, Smoothness, Eccentricity, Solidity and Extent
 - **Texture Features**: Contrast, Correlation, Energy, Homogeneity, Maximum, Probability, Entropy, Cluster Prominence, Cluster Shade and Dissimilarity
Using monochrome imaging technique to classify date

- Statistical Analysis in SPSS Software:
- Three cases
 - 3 classes (Soft, Semi Hard, Hard)
 - 2 classes (Soft, Hard)
- Classification Model
 - Linear Discriminant Analysis (LDA)
 - Stepwise LDA
Results

Three classes model

<table>
<thead>
<tr>
<th>Date class</th>
<th>LDA</th>
<th>SLDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft</td>
<td>69,5</td>
<td>58,3</td>
</tr>
<tr>
<td>semi-hard</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>Hard</td>
<td>68,7</td>
<td>69</td>
</tr>
<tr>
<td>Over all</td>
<td>65,6</td>
<td>65,8</td>
</tr>
</tbody>
</table>

Two classes model

<table>
<thead>
<tr>
<th>Date class</th>
<th>LDA</th>
<th>SLDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft</td>
<td>93,4</td>
<td>63,2</td>
</tr>
<tr>
<td>Hard</td>
<td>93,8</td>
<td>63</td>
</tr>
<tr>
<td>Over all</td>
<td>83,3</td>
<td>83,6</td>
</tr>
</tbody>
</table>
Conclusions

- The developed algorithm was able to classify the cracked dates in 3 classes with accuracy of 60 – 76 %

- The developed algorithm was able to recognize the hard dates from soft dates with accuracy of 83 – 86 %
X-ray imaging technique to detect internal infestations

Determine the potential of X-ray imaging technique to detect internal infestations by saw-toothed beetle *Oryzaephilus Surinamensis* in dates
X-ray imaging technique to detect internal infestations

- 40 date samples of “Fardh” variety
- *Oryzaephilus surinamensis* eggs
- Infested dates (30 ± 1°C, 70 ± 5 R.H & 0 LS)
- 1, 20, 25 and 27 days (egg, larvae, pupa and adult respectively)

Artificially infested dates under the microscope
X-ray imaging technique to detect internal infestations

- X-ray machine, SQUH
- Image resolution (512 x 512)
X-ray imaging technique to detect internal infestations

- Image processing in Matlab software:
 - Image Segmentation
X-ray imaging technique to detect internal infestations

– Feature Extraction
 ▪ **Histogram features**: Total gray value, Mean gray value, Standard deviation, Area of kernel, Minimum Intensity, H1-H23 & H8-H17 subdivided
 ▪ **Textural features**: Contrast (GLCM), Energy (GLCM), Mean (GLCM), Variance (GLCM), Maximum probability (GLCM), Entropy (GLCM)

– Statistical Analysis in SPSS Software:
 Classification Models
Results

Sample (1)

Sample (2)
Results
Results

80.0% of original grouped cases were correctly classified

<table>
<thead>
<tr>
<th>Groups</th>
<th>Predicted Group Membership</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sound</td>
<td>Egg</td>
</tr>
<tr>
<td>Original</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound</td>
<td>75.0</td>
<td>6.3</td>
</tr>
<tr>
<td>Egg</td>
<td>12.5</td>
<td>81.3</td>
</tr>
<tr>
<td>Larvae</td>
<td>18.8</td>
<td>.0</td>
</tr>
<tr>
<td>Pupae</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Adult</td>
<td>.0</td>
<td>6.3</td>
</tr>
</tbody>
</table>

n = 16
Conclusions

- 16 \(\frac{1}{40}\) successfully reached the mature stage
- No noticeable visual appearance of the insect infestation in the X-ray image of infested dates.
- Misclassification of more than 10%
Thank You!