International maritime transport carries over 80 per cent of the volume of world trade and is vital to global trade, which makes a crucial contribution to the economy and society.
The world seaborne trade has significantly increased in the period from 2002 to 2014 with an above three per cent growth rate annually. UNCTAD (2016) indicated that the 2015 international seaborne trade over 10 billion tons of total goods.

Source: UNCTAD (2016)
Introduction
However, the dramatic growth in the maritime sector has also brought about some concerns on its environmental impacts such as noise, air and oil pollution, waste and demand on energy.
International shipping causes around 3 per cent of the global carbon dioxide emissions from fuel combustion (UNCTAD, 2010).
Shipping Emissions

<table>
<thead>
<tr>
<th>Total shipping emissions</th>
<th>Amount</th>
<th>% of global emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in million tonnes</td>
<td></td>
</tr>
<tr>
<td>CO₂ (International shipping)</td>
<td>1,046 (870)</td>
<td>3.3 (2.7)</td>
</tr>
<tr>
<td>NOₓ</td>
<td>20</td>
<td>20 to 30</td>
</tr>
<tr>
<td>SOₓ</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>PM</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

Shipping is the most energy efficient mode of transportation

- 50g CO₂ /ton/km
- >500g CO₂ /ton/km
- 15g CO₂ /ton/km
- 5g CO₂ /ton/km
Shipping, as key links in the supply chain, are critical to the trade and transportation networks. Like other economic sectors, the shipping sector is facing a dual challenge in relation to climate change and needs to reduce its contribution to global warming.
Climate change is likely to cause sea levels to rise, lake levels to drop, more frequent and severe storms, and increases in extreme high temperatures.
Marine Stakeholder

Chain of Responsibility

- Training
- Designers
- Shipbuilders
- Equipment suppliers
- Classification
- Charterers
- Financiers
- Shipmanagers/operators
- Owners
- Cargo owners
- Brokers
- P&I Insurance
- Hull Insurance
- Flag states
- Coastal states
- Waterways authorities
- Ports & terminals
- Bunker suppliers
- Pilots
- Tug operators
- Seafarers
- Agents
- Salvors
- Shipbreakers
- Spill response
- Labour providers
Pressure from Stakeholders

- laws and regulations impose constraints and create obligations and rights.
- failure to address social and environmental demands may damage or stop a firm's operations, e.g. customers' power; investors will want to protect their own public image.
- insurers: higher premiums / refuse to offer cover.
- Seafarers: union bargaining power, strikes, boycotts, black lists.
- Wider community: pressure on governments, policy makers due to increased public awareness.
Therefore, shipping companies are beginning to define broader sustainability policies that extend beyond environment stewardship. A key concept of sustainability is that it is not limited to environmental stewardship. Rather, sustainability focuses on understanding the interconnections among the economy, society, and environment, and the equitable distribution of resources and opportunities.
World Commission on Environment and Development (also known as the Brundtland Commission) of the United Nations on March 20, 1987, which defined sustainable development as development that meet the needs of the present without compromising the ability of future generations to meet their own needs.
Motive force of economy to sustainable direction
The purpose of IMO can be summarized by the phrase: "Safe, secure and efficient shipping on clean oceans".
Sustainability issues

Typically facing the Shipping Companies -

Ecocnomic
- Revenue management
 - world debt
 - credit crisis
- Earnings
- Costs - resource efficiency
- Business continuity
 - access to new oil reserves / energy
 - new fuel technology
- Information Security Management

Stricter competition with international companies / taxes, etc

Social
- Employees
 - diversity
 - job creation
 - human factors
 - training & development
- Cultural audits
- Safety (fatalities)
- Business ethics
 - standards / codes of practice
 - bribery and corruption
- political activity
- Human rights especially in supply chain and exploration (ILO)
- Growing and aging populations
- Poverty

Environment
- Regulatory compliance
- Emissions reduction
- Waste minimisation
- Climate change
 - carbon reduction
 - energy efficiency and products
 - ISO 14064, GHG
- Green procurement (i.e. Green Passport)
- Spill prevention/pollution
- Biodiversity (BWM)
- Working in environmentally sensitive areas

SUSTAINABILITY
Sustainability and Corporate Social Responsibility

- Sustainability and CSR have evolved from being voluntary to mandatory (pressure from stakeholders) – and then to an investment (for improvement of long-term business performance)
- ‘enlightened self-interest’: companies adopt a socially responsible approach not for any philanthropic reason but in pursuit of good business practice and organizational efficiency

- potential increase in business
- cost savings (on fines, lawsuits, clean-up costs, claims, increased premiums, and falls in share prices that might have been incurred)
- efficient use of raw materials (fuel oil / consumption / engine)
- self-regulation could help in a number of ways
- attract well-qualified seafarers
- fewer inspections
- faster turnaround in ports
Environmental Issues
Environmental Indicators

- Sea Pollution
- Energy consumption
- Air pollution (SOx, NOx, CO2)
- Raw materials consumption (e.g. ship construction/recycling)
- Biodiversity: (ballast water management)
- Land pollution (from ship dismantling)
- Noise pollution (e.g. affecting communities near ports)
Health Risk
Emission Control Areas
IMO agreement to reduce atmospheric pollution from ships

Sulphur content of fuel permitted in Emission Control Areas

- 1.5% for 2005
- 1.0% for 2010
- 0.1% for 2015

<table>
<thead>
<tr>
<th>Year</th>
<th>Sulphur Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>1.5%</td>
</tr>
<tr>
<td>2010</td>
<td>1.0%</td>
</tr>
<tr>
<td>2015</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

depending on the outcome of a review, to be concluded by 2013, and the availability of the required fuel, this date could be deferred to 1 January 2020.
Whale (Collisions with commercial ships are the greatest threat to North Atlantic Right Whales. Both summer feeding ranges and winter calving grounds are located in busy shipping channels.)
Economic Issues
Economic Indicators

- Freight transport demand
- Freight transport earnings/profits
- Total ship losses/repairs
- P&I claims
- Contribution to national economic indicators
- Investments in transport infrastructure
- External costs (e.g. capital, operational and voyage costs)

Source: Mitroussi and Pettit 2007
Technological Indicators

- Degree of automation
- Average age of fleet
- Size of the fleet
- Energy efficiency for transport of freight
- Adoption of air/water pollution prevention technology (e.g. emissions: per tonne-kilometre; proportion of fleet meeting emission standards / double hull standards)
- Uptake of cleaner fuels and number of alternative fuel vessels
- Cargo handling infrastructure (aboard/ashore)
Operational Indicators

- Fleet productivity, e.g. load factor for ships
- Cost minimization
- Employee turnover
- Inventory costs
- Time costs
- Use of IT
Possible measures for Cargo ship

IMO recommends a list of best practices for Fuel-Efficient Operations of Ships

- **Fuel-Efficient Operations**
 - Weather routeing
 - Just in time (Port communication, speed selection)
 - Speed optimization (slow steaming)
 - Optimized shaft power

- **Optimized ship handling**
 - Optimum trim/ballast
 - Optimum ballast
 - Optimum propeller and propeller inflow considerations
 - Optimum use of rudder and heading control systems (autopilots)

- **Hull maintenance**

- **Propulsion system maintenance**

- **Waste heat recovery**

- **Improved fleet management**

- **Energy management**

- **Fuel Type...**
Energy efficiency and the reduction of GHG emissions from ships

The MARPOL Convention addresses air pollution and emissions from ships deals under Annex VI, first adopted in 1997.

A revised Annex VI was adopted in 2005 and it entered into force in 2010, phasing in a progressive reduction in sulphur oxide (SOx) from ships and further reductions in nitrogen oxide (NOx) emissions from marine engines. Amendments adopted in 2011 set mandatory measures to reduce emissions of greenhouse gases (GHGs) from international shipping, with the Energy Efficiency Design Index (EEDI) made mandatory for new ships, and the Ship Energy Efficiency Management Plan (SEEMP) made a requirement for all ships. These amendments enter into force on 1 January 2013.

Mandatory measures to reduce emissions of greenhouse gases (GHGs) from international shipping entered into force on 1 January 2013. The amendments to MARPOL Annex VI Regulations for the prevention of air pollution from ships, which entered into force on 1 January 2013, add a new chapter 4 to Annex VI on Regulations on energy efficiency for ships to make mandatory the Energy Efficiency Design Index (EEDI), for new ships, and the Ship Energy Efficiency Management Plan (SEEMP) for all ships.
Target Years & Reduction Rates

Draft regulatory text for mandatory EEDI requirements: target years & reduction rates

<table>
<thead>
<tr>
<th>Ship Type</th>
<th>Size</th>
<th>Phase 0 1 Jan 2013 - 31 Dec 2014</th>
<th>Phase 1 1 Jan 2015 - 31 Dec 2019</th>
<th>Phase 2 1 Jan 2020 - 31 Dec 2024</th>
<th>Phase 3 1 Jan 2025 onwards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Carrier</td>
<td>20,000 DWT and above</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10,000 - 20,000 DWT</td>
<td>n/a</td>
<td>0-10*</td>
<td>0-20*</td>
<td>0-30*</td>
</tr>
<tr>
<td>Gas tanker</td>
<td>10,000 DWT and above</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2,000 - 10,000 DWT</td>
<td>n/a</td>
<td>0-10*</td>
<td>0-20*</td>
<td>0-30*</td>
</tr>
<tr>
<td>Tanker</td>
<td>20,000 DWT and above</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>4,000 - 20,000 DWT</td>
<td>n/a</td>
<td>0-10*</td>
<td>0-20*</td>
<td>0-30*</td>
</tr>
<tr>
<td>Container ship</td>
<td>15,000 DWT and above</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10,000 - 15,000 DWT</td>
<td>n/a</td>
<td>0-10*</td>
<td>0-20*</td>
<td>0-30*</td>
</tr>
<tr>
<td>General Cargo ships</td>
<td>15,000 DWT and above</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3,000 - 15,000 DWT</td>
<td>n/a</td>
<td>0-10*</td>
<td>0-15*</td>
<td>0-30*</td>
</tr>
<tr>
<td>Refrigerated cargo carrier</td>
<td>5,000 DWT and above</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3,000 - 5,000 DWT</td>
<td>n/a</td>
<td>0-10*</td>
<td>0-15*</td>
<td>0-30*</td>
</tr>
<tr>
<td>Combination carrier</td>
<td>20,000 DWT and above</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>4,000 - 20,000 DWT</td>
<td>n/a</td>
<td>0-10*</td>
<td>0-20*</td>
<td>0-30*</td>
</tr>
</tbody>
</table>

* Factor to be linearly interpolated between two values dependent upon vessel size (the lower value of reduction factor is to be applied to the smaller ship size).
Social Issues
Social Indicators

- Accident fatalities
- Onboard injuries
- Suicides
- Health of people working ashore (construction/dismantling)
- Fair working conditions (e.g. ITF wage scale)
- Community economic enhancement: (e.g. shore based job generation)
Safety Issue
The capsized cruise ship was hoisted out of the waters of the Yangtze river on Friday evening (5 June) and righted the following morning. The death toll in the disaster stands at 434 following a thorough search of the raised ship over the weekend. Eight people are still missing, and authorities said they would search for bodies downriver more than 1,000km (600 miles) – as far as Shanghai.
Jan/2012 night Costa Concordia ran aground (Complacency ?)
April 2014: Passenger Sewol sank in Korean waters (Ship Handling Skill?)
Ferry Accident in South Korea

On April 17, 2014, a huge ferry named SEWOL carrying 476 passengers and 150 vehicles sunk off the coast of South Korea with hundreds of high school students on board.

<table>
<thead>
<tr>
<th>Profile of the SEWOL Ferry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous name</td>
<td>Ferry Naminoue</td>
</tr>
<tr>
<td>Birth place</td>
<td>Japan</td>
</tr>
<tr>
<td>Vessel age</td>
<td>≥ 20 years</td>
</tr>
<tr>
<td>Vessel type</td>
<td>Car Ferry, one kind of Ro-Ro ships</td>
</tr>
<tr>
<td>Owner</td>
<td>Chonghaejin Marine Co.</td>
</tr>
<tr>
<td>Modification</td>
<td>Added many cabins which were built on the top floor of the ship, increasing passenger capacity and overloading the cargo</td>
</tr>
<tr>
<td>Operation information</td>
<td>Operated in Japan from 1994 to 2012</td>
</tr>
</tbody>
</table>
IMO Shipping Conventions

A summary:

Legal
- PAL – The convention relating to the carriage of Passengers and their Luggage by Sea (1974)

Environmental Protection
- INTERVENTION – convention relating to intervention on the high seas in cases of Oil Pollution Casualties (1969)
- CLC – Convention in Civil Liability for Oil Pollution Damage (1969)
- IOPC - Convention on the establishment of an International Compensation Fund for Oil Pollution Damage (1971, 1992)

Trade

IMO

Safety

SAR – Convention on Maritime Search and Rescue (1979)
- LL – The Loadline Convention (1966)
- CSC – The Convention for Safe Containers (1972)

Sustainable policy in the port sector

- Air quality monitoring
- Clean truck program
- Wildlife habitat
- Alternative maritime power
Green Terminal

Solar and Wind Module

複合式能源路燈

特色

- 發電能源
 - 結合太陽能及風力發電照明
 - 實施範圍：行政區路燈

- 產生電量
 - 產生7000度/年
 - 省下2.1萬元/年

- 減少二氧化碳排放量
 - 每年減少4,388 kg
綠色碼頭

GREEN TERMINAL

行政大樓

太陽能光電板

設備及效率
(行政大樓與管制站合計)

- 產生電量
 - 產生17萬度/年
 - 省下51萬元/年

- 減少二氧化碳排放量
 - 減少108,120 kg/年

管制站
綠色碼頭 GREEN TERMINAL

岸電系統 (Alternative Maritime Power)

優點
- 使用岸電供給船上所需電力 (關閉船上輔助發電機)
- 減少二氧化碳排放量
 - 每年減少470,000 kg (only YM vessels)
Organizational safety climate refers to the coherent set of perceptions and expectations that employees have regarding safety in their organization. It is related to shared perceptions about organizational values, norms, beliefs, practices, and procedures. Research has shown that safety climate can help predict safety-related outcomes, such as fatalities or injuries.
Theoretical Background

- Theory of planned behavior (TPB)
- Theory of normative conduct (TNC)
- Social exchange theory
- Motivation theories
Efficient management must value safety climate

- The research shows that safety climate positively influences employees’ safety behaviours. Shipping operators should precisely design their safety training programmes and provide incentives to encourage employees to participate in safety issues. Yet, the top management lacks safety commitment, the effectiveness of training and motivation will invariably decline. Policy makers should properly understand the value of safety climate versus the costs of casualties.
Safety Culture

An organization with a "safety culture" is one that gives appropriate priority to safety and realises that safety has to be managed like other areas of the business. For the shipping industry, it is in the professionalism of seafarers that the safety culture must take root.

That culture is more than merely avoiding accidents or even reducing the number of accidents, although these are likely to be the most apparent measures of success. In terms of shipboard operations, it is to do the right thing at the right time in response to normal and emergency situations. The quality and effectiveness of that training will play a significant part in determining the attitude and performance - the professionalism - the seafarer will subsequently demonstrate in his, or her, work. And the attitude adopted will, in turn, be shaped to a large degree by the 'culture' of the shipping company.
Safety Culture

Safety culture is enlightened self interest

Safety culture is of interest to all senior decision makers in shipping companies, not only those with direct involvement in the day to day technical operation of their companies' ships, because improving safety saves money as well as lives. In addition to ethical and social responsibilities, shipping companies practise a safety culture because:

- Senior managers that cannot manage safety will be unlikely to manage a profitable shipping company
- A dedicated approach to safety is a cost saving not a cost
- Safety culture provides a means of maximising the benefits and cost savings that can be derived from implementing the ISM Code.

FOCUS ON SAFETY CULTURE

Regulators, classification societies, the maritime press and IMO constantly refer to the need for ship operators to practise a safety culture. But what precisely do they mean?

Everyone agrees with the objectives of a safety culture - the reduction and elimination of accidents which involve injuries to ships' personnel and damage to property and the environment — but there can be some confusion as to what a safety culture really represents.

Experts commonly describe it as the values and practices that management and personnel share to ensure that risks are minimised and mitigated to the greatest degree possible. In short, this means that safety is always the first priority.

With a true safety culture, every crew member - whether a rating or a master - thinks about safety, and new ways of improving it, as matter of course.

The cause of practically every unsafe incident can be traced to some form of human or organisational error. If people think about safety continuously, many accidents simply will not happen because virtually all so-called “accidents” are in fact preventable.

The development of a safety culture does not lend itself to prescriptive rules, and the purpose of this leaflet is simply to encourage key people in shipping to consider how even more might be done to improve levels of maritime safety.

Although experts on the subject may talk in terms of psychology or behavioural change, the key to achieving a safety culture is:

- Recognising that all “accidents” are preventable and normally only occur following unsafe actions or a failure to follow correct procedures
- Constantly thinking safety and
- Always setting targets for continuous improvement.

HOW CAN A SAFETY CULTURE SAVE MONEY?

The following benefits have been derived by shipping companies from the conscious attempt to practise a safety culture:

- reduction in lost employee hours
- reduction in hospital costs
- reduction in sick leave
- reduction in pollution costs
- reduction in cargo damage
- reduction in insurance premiums

""The indirect costs of maritime accidents are estimated to be around 3 times the direct costs associated with injuries, deaths, property damage and oil spills. ""
Strategic suggestions to improve sustainability
- sustainable supply chain management
A Concept of Sustainable Supply Chain Management at Port

- Supplier Collaboration Management
- Internal Sustainable Management
- Customer Collaboration Management

Sustainable Development

- Business
- Harbor management
- Finance
- Equipment
- Information
- Shipping & Navigation

- Trucking company
- Rail
- Depots
- Shipping Lines
- Terminal
- Barge operations
Port-decision makers in sustainable management need to integrate external customers (i.e. carriers) and supply chain partners (i.e. terminal operators, truck companies, and stevedoring companies) and internal sustainable management to improve their sustainability performance.

Port authorities should pay attention to setting sustainable development goals, having regulations and a clear organization of responsibility, and encouraging staff participation in training programs, in order to implement sustainable development.
Strategic suggestions to improve sustainability
- organizational green climate

- Our empirical research found that each of the organizational green climate dimensions - green policy, green training, green motivation, and green communication – is essential for enhancing employees' green behaviors.

- These results are generalizable to other sectors (e.g. shipping companies, airlines, and manufacturers), they reinforce the criticality of an organizational green climate in environmental management.
The Conceptual Model

Green Port Policy
Green Training
Green Communication
Green Motivation

Employee Green Behavior
The effect of safety climate on seafarers’ safety behaviors in container shipping
Chin-Shan Lua,*, Chaur-Luh Tsaib,1

a Department of Transportation and Communication Management Science, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan, ROC
b Department of Shipping Technology, National Kaohsiung Marine University, No. 402, Zhangzhou 3rd Road, Qijin District, Kaohsiung City 80443, Taiwan, ROC

Safety climate and safety behavior in the passenger ferry context
Chin-Shan Lu*, Chung-Shan Yang1

Model fitness: $\chi^2/df=3.76; P<0.01; GFI=0.90; AGFI=0.87; CFI=0.94; TLI=0.93; RMR=0.022; RMSEA=0.067$
The Effects of Ethical Leadership and Ethical Climate on Employee Ethical Behavior in the International Port Context

Chin-Shan Lu · Chi-Chang Lin

Ethical leadership and ethical climate in the container shipping industry

Chin-Shan Lu*
Department of Logistics and Maritime Studies,
The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong
E-Mail: juchinshans1@gmail.com
*Corresponding author

Szu-Yu Kuo and Yi-Tai Chiu
Department of Transportation and
Communication Management Science,
National Cheng Kung University.

Table 2: Factor analysis of the ethical leadership, ethical climate, and ethical behavior attributes

<table>
<thead>
<tr>
<th>Item</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethical leadership</td>
<td></td>
</tr>
<tr>
<td>My supervisor can be trusted</td>
<td>0.802</td>
</tr>
<tr>
<td>My supervisor discusses business ethics or values with employees</td>
<td>0.844</td>
</tr>
<tr>
<td>My supervisor makes fair and balanced decisions</td>
<td>0.846</td>
</tr>
<tr>
<td>My supervisor has the best interests of employees in mind</td>
<td>0.853</td>
</tr>
<tr>
<td>My supervisor uses examples of how to do the right thing in training employees</td>
<td>0.838</td>
</tr>
<tr>
<td>My supervisor defines success not purely in dollars but actually the way they are treated</td>
<td>0.820</td>
</tr>
<tr>
<td>My supervisor says, "what is the right thing to do?" when making decisions</td>
<td>0.827</td>
</tr>
<tr>
<td>My supervisor conducts fair personnel in an ethical manner</td>
<td>0.818</td>
</tr>
<tr>
<td>My supervisor views what employees have to say</td>
<td>0.770</td>
</tr>
<tr>
<td>My supervisor disciplines employees who violate standards</td>
<td>0.690</td>
</tr>
</tbody>
</table>

Ethical climate

<table>
<thead>
<tr>
<th>Item</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethical climate</td>
<td></td>
</tr>
<tr>
<td>Employees comply with the company’s ethical behavior when uncertain</td>
<td>0.737</td>
</tr>
<tr>
<td>The most effective manner for learning is to "do the right thing"</td>
<td>0.736</td>
</tr>
<tr>
<td>Employees take care of each other in the company</td>
<td>0.738</td>
</tr>
<tr>
<td>Employees actively follow the company’s policies</td>
<td>0.664</td>
</tr>
<tr>
<td>The major concern is doing what is best for the other person</td>
<td>0.685</td>
</tr>
<tr>
<td>Effective employees in the company go by the book</td>
<td>0.640</td>
</tr>
<tr>
<td>Employees are expected to follow the laws and regulations</td>
<td>0.502</td>
</tr>
<tr>
<td>Employees are expected to comply with the laws and regulations and other considerations</td>
<td>0.313</td>
</tr>
<tr>
<td>The laws as ethical code for professionals in the major construction</td>
<td>0.162</td>
</tr>
<tr>
<td>The most important concern is the good of all people in a whole</td>
<td>0.376</td>
</tr>
<tr>
<td>What is best for everyone in the major construction</td>
<td>0.343</td>
</tr>
</tbody>
</table>

Ethical behavior

<table>
<thead>
<tr>
<th>Item</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrative ethical behavior (mean = 3.48, percentage variance = 0.50, Cronbach’s = 0.64)</td>
<td></td>
</tr>
<tr>
<td>I think my peers do not behave in an unethical manner</td>
<td>0.673</td>
</tr>
<tr>
<td>I think my peers do not do harm to a person’s work</td>
<td>0.635</td>
</tr>
<tr>
<td>I think my peers do not treat other people fairly</td>
<td>0.563</td>
</tr>
<tr>
<td>I think my peers do not help others</td>
<td>0.602</td>
</tr>
<tr>
<td>I think my peers do not act in a company’s interest for personal gain</td>
<td>0.602</td>
</tr>
<tr>
<td>I think my peers do not engage in unethical behavior</td>
<td>0.576</td>
</tr>
<tr>
<td>I think my peers do not ask for something that is not their own</td>
<td>0.405</td>
</tr>
<tr>
<td>I think my peers do not act in a company’s interest for personal gain</td>
<td>0.405</td>
</tr>
<tr>
<td>I think my peers do not lose touch with me</td>
<td>0.444</td>
</tr>
<tr>
<td>I think my peers do not make unethical decisions in a company</td>
<td>0.465</td>
</tr>
<tr>
<td>I think my peers do not act in an unethical manner</td>
<td>0.343</td>
</tr>
<tr>
<td>I think my peers do not make unethical decisions in a company</td>
<td>0.343</td>
</tr>
<tr>
<td>I think my peers do not make unethical decisions in a company</td>
<td>0.343</td>
</tr>
</tbody>
</table>

Fig. 2: Structural equation modeling results

5/2/2017
Thanks for your listening