

Off-shore wind power generation for coastal sustainable urban development

Prof. YANG Hongxing 楊洪興

Research Institute for Sustainable Urban Development Department of Building Services Engineering, The Hong Kong Polytechnic University

26-04-2017

- Current development of wind power generation in the world
- Potential offshore wind power generation in Hong
 Kong
- Development of wind turbine wake models and optimization of wind turbine layout
- Conclusions

Status of local electricity generation

 \succ In 2012, the electricity mix in Hong Kong is constituted by

- ✓ 24% nuclear power
- ✓ 22% natural gas
- ✓ 53% coal
- ✓ 0.1% renewable energy

► Abundant solar and wind energy

resources.

- \geq <u>59.91%</u> of HK area is covered by water
- ≻Two offshore wind farms are proposed
 - by CLP and HKE which are the initial

attempts in offshore wind development.

Global annual installation of wind power

♦ 2016 was a record year for the wind industry as it is the third consecutive year that annual installations crossed the 50 GW. The new global total for wind power at the end of 2016 was 486.7 GW, representing cumulative market growth of more than 12.6%.

Total cumulative installation of wind power

Sy the end of last year the number of countries with more than 10,000 MW installed capacity was 9: including 4 in Europe (Germany, Spain, UK and France); 2 in Asia-Pacific (China & India); 2 in North America (US & Canada) and 1 in Latin America (Brazil).

Development of offshore wind power in the world

♦ In 2016 only, new capacity additions totaled nearly 2.2 GW across five markets globally. This brought total offshore wind installed capacity to over 14.4 GW.

Annual installations of wind power in the EU have increased over the last 15 years from 3.2 GW in 2000 to 14.4 GW in 2016. The total offshore wind capacity is still limited, but growth rates are very high!

Hong Kong offshore wind power potential assessment

Offshore wind farm site selection:

The water area in Hong Kong: 1650.64 km², 59.91% of the Hong Kong territory area.

Data collection from the site near Lamma island

Hong Kong offshore wind power potential assessment

Input Data Source for the Selected Offshore Wind Farm Wind in the offshore wind farm near Lamma Island

One year's wind data measured by The Hongkong Electric Co., Ltd. (HK Electric) has been used for the wind power potential analysis.

Wind turbine:

5 MW wind turbine is selected.

Name of parameters	Value
Hub height _Z (m)	85
Wind turbine rotor R_{r} (m)	63
Downstream rotor radius R_d (m)	77.06
Turbine thrust coefficient q	0.7486
Roughness length of ground $z_0(m)$	0.001
The entrainment constant α	0.044
The axial induction factor a	0.249

Power generation:

$$P(v) = \begin{cases} 0; v < 3.5\\ 5140 \times \exp(-((v - 13.31) / 5.162)^2); 3.5 \le v < 13.31\\ 5140; 13.31 \le v < 30\\ 0; v \ge 30 \end{cases}$$

Objective function: Lowest COE

Cost factor calculations:

Cost factor(€/MW)	Variables	Model	
Turbines	Turbine size	1.1*10 ⁶	
Foundation	Water depth(h)	$(499h_w^2 + 6219h_w + 311810) \times 1.4(0 < h_w < 25)$	
	water deput(n_w)	$(440h_w^2 + 19695h_w + 901691) \times 1.4(h_w \ge 25)$	
Grid	The least subsea cost distance d_{s} (km)		
	The least land cost distance d_{l} (km)	$(0.38d_s + 0.4d_1 + 76.6) \times 10^\circ 7600$	
O&M Least cost distance to service harbour d (km)		$(0.29d^2 + 159d + 50415) \times 0.4$	
Other	The percentage of investment costs	10%	

COE calculations: $COE = (C_c.FCR + C_{O\&M}) / AEP$

- Fixed Charge Rate = 15%
- The wind farm is operating 24 hours a day
- The price for electricity is 0.143USD/kWh=1.45HKD/kWh

Hong Kong offshore wind power potential assessment

Optimization results of the selected wind farm near Lamma Island and the assessment of Hong Kong offshore wind power potential

Number of	Total Power	Total Cost	COE(HKD/kWh)
WTs	(10 ⁸ kWh)	(10 ⁸ HKD)	
25	5.78	27.24	1.55

Item	Offshore wind
Power potential	14449 GWh
Proportion of electricity use in HK in 2014	32.91%
Saving coal's importation	33374845
Proportion of importation coal	53.79%
Saving natural gas's importation	4531514
Proportion of importation natural gas	156%
COE (HKD/kWh)	~1.5

WF configuration	WT layout distance	APG (×10 ⁸ kWh)	WT numbers	APG per WT (×10 ⁶ kWh)	LCOE (HK\$/ kWh)	WFE (%)
	14.5D×11.0D	5.48	28	19.56	1.474	86.84
	14.5D×11.5D	5.57	28	19.90	1.475	88.37
	14.5D×8.5D	6.58	36	18.29	1.476	81.15
	14.5D×9.0D	6.56	36	18.22	1.478	80.93
Aligned WF	14.0D×9.5D	6.33	32	19.78	1.480	87.85
	14.5D×12.0D	5.44	28	19.44	1.483	86.31
	14.5D×10.0D	6.39	32	19.95	1.484	88.59
	15.0D×12.0D	5.32	28	19.00	1.484	84.35
	14.0D×12.0D	5.44	28	19.43	1.489	86.25
	12.0D×11.5D	6.84	35	19.54	1.491	86.74
	14.5D×11.0D	5.43	28	19.39	1.467	86.07
	14.5D×8.5D	6.57	34	19.33	1.473	85.80
	14.0D×9.5D	6.33	32	19.29	1.476	85.59
	14.0D×11.0D	5.38	28	19.21	1.480	85.30
Staggered	14.5D×9.5D	6.13	32	19.16	1.485	85.08
WF	14.5D×10.0D	5.74	30	19.13	1.487	84.95
	14.5D×9.0D	6.50	34	19.12	1.489	84.92
	14.5D×11.5D	4.94	26	19.00	1.497	84.36
	15.0D×10.0D	5.69	30	18.97	1.500	84.23
	12.0D×11.0D	6.65	35	18.99	1.501	84.34
	-	6.29	30	20.97	1.290	93.12
	-	5.55	27	20.57	1.315	91.34
	-	5.32	26	20.48	1.321	90.94
Scattered	-	5.73	28	20.47	1.322	90.90
WF	-	7.84	39	20.10	1.346	89.25
	-	6.61	33	20.03	1.351	88.94
	-	6.96	35	19.88	1.361	88.28
	-	4.97	25	19.86	1.362	88.19

Study on Offshore Decommissioning Cost

The year 2015 is the first time that offshore turbines were decommissioned. At one offshore wind farm of UK, the other five were installed at Sweden. In the year 2016, the decommissioned offshore wind capacity were approximately 520 MW.

First Decommissioning of an Offshore Wind Farm

- The unexpected increase in decommissioning costs is a crucial factor that cannot be ignored as for the huge economical burden.
- Some institutes estimate it will cost €200,000-500,000/MW, equals to 60-70% of installation costs (DNV GL) or 2.5% of the total project cost (The Contact Programme) to decommission offshore turbines.

- The life expectancy of the offshore wind turbine is around 25–30 years. However, the foundation is always overdesigned.
- It is possible and meaningful to develop the decommissioning strategy to reduce the cost from the initial design phase of an offshore wind farm.

Types of offshore wind turbine foundations

Decommissioning Strategy

Decommissioning Strategy

When the first generation offshore wind turbines are decommissioned, foundations can still be on service after some strengthen strategies in the second generation.

$$Cost_{capital} = Cost_{WT1} + Cost_{f1} + Cost_{install1} + Cost_{strengthen} + Cost_{WT2} + Cost_{install2} + Cost_{decommission2}$$

Offshore Wind Farm Optimization

The wind turbine layout optimizing process is based on the Multi-Population Genetic Algorithm (MPGA). The Cost of Energy (COE) is regarded as the criteria to judge the new method. The COE is on account of two generations' energy output and total cost.

Application of Decommissioning Strategy

Waglan Island Sea Area Selected area: 3740m×5828m

Wind data source: Royal Observatory, Hong Kong

Wind Velocity Frequency Distribution in Waglan Island Sea Area

Potential Offshore Wind Farm Selections (Gao. et al)

Parameters	Turbine1	Turbine2
Rated power	2.5MW	1.65MW
Cut-in wind speed	3	3
Rated wind speed	11.1	10.5
Cut-out wind speed	25	23
Rotor diameter	108	88
Hub height	80	70

Application of Decommissioning Strategy

Improved Wake Model: new development

Wake decay constant k was effected by ambient turbulence level o that the turbine induces turbulence!

Before modified k, turbulence model should be improved.

Frandsen et al's model, 1996 I_w

$$V_{ake} = \sqrt{K_n \frac{C_T}{(x/D)^2} + I_0^2}$$

Tian et al.'s model, 2015

$$I_{wake} = K_n \frac{C_T}{x/D} + I_0$$

Iwake is determined by the I_0 , C_T and x/D.

Proposed turbulence model:

$$I_{wake} = \left(K_n \frac{C_T}{(x/D)^{0.5}} + I_0^{0.5}\right)^2$$

Improved Jenson-Gaussian Wake Model: Development

Using this equation to calculate *kwake*:

$$k_{\text{wake}} = k \frac{I_{\text{wake}}}{I_0}$$

Replacing wake decay constant k in the Jenson-Gaussian wake model using k_{wake}

Improved Jenson-Gaussian wake model:

$$\begin{cases} u^* = u_0 \left[\frac{1 - 2a}{\left(1 + \frac{k_{wake}}{\sqrt{2\pi}} + \frac{r_1}{r_1}\right)^2} \right] \\ u = u_0 - (u_0 - u^*) \frac{5.16}{\sqrt{2\pi}} \cdot e^{\frac{-r^2}{2\left(\frac{r_x}{\sqrt{2.58}}\right)^2}} \end{cases}$$

Improved Jenson-Gaussian Wake Model: Validation

With previous models and data from field experiment (Taylor's study of Nibe site). *Two turbines*, 45m hub height, 40 diameters, wind speed of 8.55m/s.

'Qualified' good performance is obtained by the improved Jenson-Gaussian wake model !

Analytical Wake Model for Multiple Turbines in Row: superposition

Wake model of single turbine:

Wake model of two turbines:

Wake model of multiple turbines:

$$\begin{cases} u^* = u_0 \left[\frac{1 - 2a}{(1 + k_{wake} x / r_1)^2} \right] \\ u = u_0 \left[\frac{-(r - r_c)^2}{2s_w^2} \right] \end{cases}$$

$$b = (u_0 - u^*) \frac{5.16}{\sqrt{2\pi}}$$

$$s_w = \frac{r_x}{2.58}$$

$$\begin{cases} u^* = u_0 \left[\frac{1 - 2a}{(1 + k_{wake} x / r_1)^2} \right] \\ u = u_0 \left[\frac{b_1}{b_1} \left[\exp\left[\frac{-(r - r_{c1})^2}{2(s_{w1})^2} \right] \right] + \left[\frac{b_2}{b_2} \left[\exp\left[\frac{-(r - r_{c2})^2}{2(s_{w2})^2} \right] \right] \end{cases}$$

$$\begin{cases} u^* = u_0 \left[1 - \frac{2a}{(1 + k_{wake} x / r_1)^2} \right] \\ u = u_0 - \left(b_1 \left[\exp\left[\frac{-(r - r_{c1})^2}{2s_{w1}} \right] \right] - \dots + b_n \left\{ \exp\left[\frac{-(r - r_{cn})^2}{2s_{wn}} \right] \right\} \end{cases}$$

CWEX-13 Field Experiment:

- ➤ 300 MW of GE 1.5 XLE
 - (80m hub height, 80m D)
- Three profiling lidars (WindCUBEv1)
 - WS and WD at 1 Hz; 40m to 220m above the surface; 29 June 5 Sept, 2013
- ➢ One scanning lidar (WindCUBE 200S)
 - Line-of-sight (LOS) velocities from six elevations of PPI scans

Validation for the Multiple Wakes of Turbines in Row

Fitting and Validation

scan gate = 1900

5.5

Multiple Wakes' Characteristics under Different Atmospheric Conditions

Comparisons between measured data and modeled

- Velocity deficit

Summarizes:

- •Velocity deficit, 55% for outer turbine and 70% for inner ones.
- •No differences after the downwind distance of 5D.
- •The VD of the inner one is 1.15-fold of VD caused by the outer turbine.
- •Wakes from the outer turbines erode faster than that from the inner ones.

- Velocity deficit under different atmospheric stabilities

Summarizes:

Few influence of the atmospheric stabilities on the velocity deficit can be observed. Still the inner wakes have **bigger velocity deficit** than that of the outer wakes in both stable and unstable conditions.

- Wake width

Summarizes:

•Wake width, in the range of 1.5D-2.0D.

•The WW of the inner one is **0.87-fold** of WW caused by the outer turbine.

- Wake width under different atmospheric stability

Summarizes:

The outer wakes expand more than the inner wakes under unstable atmospheric conditions while there is no significant difference between the widths under stable conditions.

- Wake centerline

Summarizes:

Night on August 23 from 10:26:00 to 12:09:33 UTC, the wind direction was in the range 153 °-160°. The centerlines have the same trend after the row of turbines.

Study on wind turbine layout optimization

1. Basic Models for the Optimization Program Development

Optimal layout pattern can increase power generation and reduce COE.

Wake model: $u_i = u_0 \times [1 - \sqrt{\sum_{i=1}^{N} (1 - u/u_0)^2}]$

Power generation: $P = C_p(\lambda, \beta) \rho A u^3 / 2$

Cost model: $COST = N \times [\frac{2}{3} + \frac{1}{2}e^{-0.00174}N^2]$

Wind farm site			
square region: 2km*2km			
The ground roughness z_0 0.3m			
Wind turbine properties			
Hub height	60m		
Rotor radius 40m			
Thrust coefficient	0.88		

Wind farm efficiency: $\eta_{WF} = \sum_{1}^{N} 0.3 \times u_i^3 / N \times (0.3 \times u_0^3)$

Wind Conditions:

Case NO.	Case description	Wind speed(m/s)	Wind Direction
1	Constant Wind Speed;	12	Fixed
	Fixed Wind Direction	14	0°
2	Constant Wind Speed;	12	equal probability
2	Variable Wind Direction	12	0-360°
3	Variable Wind Direction;	8 12 17	Seen from the
	Variable Wind Direction	0,12,17	following Figure

5. Turbine layout optimization program development

2. Velocity calculation based on wake effect

Calculate the velocity deficit when the WD in the range of $[0, \pi/2)$, $[\pi/2, \pi)$, $[\pi, 3\pi/2)$ and $[3\pi/2, 2\pi)$, respectively.

Two steps: 1. Check wake number and 2, calculate velocity

5. Turbine layout optimization program development

3. Program design

6. Three layout patterns: Scattered, aligned and staggered

- From the aspect of engineering, turbines are recommended to be installed in arrays.
- 7D -12D in prevailing wind direction (PWD) and 5D-10D in crosswind direction (CWD) (Huang et al. 2012).
- No recommendations about Hong Kong offshore.

North Carolina offshore wind farm

6. Results for Aligned and Staggered WF Configurations

6.1 Energy Generation : Aligned

6. Results for Aligned and Staggered WF Configurations

6.3 Energy Generation : Staggered

6. Results for Aligned and Staggered WF Configurations6.4 Results of COE

6. Results for Aligned and Staggered WF Configurations6.5 Results of Wind farm efficiency

Aligned (HKD/KWh)

6.6 Optimal Turbine Number for Scattered WF Configurations

- Wind power develops fast and offshore wind power can provide meaningful power supply to coastal urban areas for renewable energy applications.
- The annual offshore wind power generation could be 40.8×10⁸ kWh in Hong Kong, which accounts for 32.9% of the local annual electricity consumption in 2012.
- The developed 2-dimensional wake model is a new development in this professional area.
- The MPGA optimization program has been successfully developed and validated, which is a useful tool in wind farm micro-siting and power generation prediction.
- Decommissioning costs should be included for life-cycle cost analysis.

Thanks Q & A