Off-shore wind power generation for coastal sustainable urban development

Prof. YANG Hongxing 楊洪興
Research Institute for Sustainable Urban Development
Department of Building Services Engineering,
The Hong Kong Polytechnic University

26-04-2017
Outlines

- Current development of wind power generation in the world
- Potential offshore wind power generation in Hong Kong
- Development of wind turbine wake models and optimization of wind turbine layout
- Conclusions
Status of local electricity generation

- In 2012, the electricity mix in Hong Kong is constituted by:
 - 24% nuclear power
 - 22% natural gas
 - 53% coal
 - 0.1% renewable energy

Source: Hong Kong’s climate change strategy and action agenda
Hong Kong Energy End-use Data 2013
Abundant solar and wind energy resources.

59.91% of HK area is covered by water.

Two offshore wind farms are proposed by CLP and HKE which are the initial attempts in offshore wind development.
Global annual installation of wind power

2016 was a record year for the wind industry as it is the third consecutive year that annual installations crossed the 50 GW. The new global total for wind power at the end of 2016 was 486.7 GW, representing cumulative market growth of more than 12.6%.
By the end of last year the number of countries with more than 10,000 MW installed capacity was 9: including 4 in Europe (Germany, Spain, UK and France); 2 in Asia-Pacific (China & India); 2 in North America (US & Canada) and 1 in Latin America (Brazil).
Development of offshore wind power in the world

- In 2016 only, new capacity additions totaled nearly 2.2 GW across five markets globally. This brought total offshore wind installed capacity to over 14.4 GW.

- Annual installations of wind power in the EU have increased over the last 15 years from 3.2 GW in 2000 to 14.4 GW in 2016. The total offshore wind capacity is still limited, but growth rates are very high!
Offshore wind farm site selection:

The water area in Hong Kong: 1650.64 km², 59.91% of the Hong Kong territory area.

<table>
<thead>
<tr>
<th>Area</th>
<th>Anemometer tower nearby</th>
<th>Potential wind farm location</th>
<th>Total area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2320m × 4706m</td>
<td>Lamma Island</td>
<td>Southwestern Lamma Island</td>
<td>16.86 km²</td>
</tr>
</tbody>
</table>

Total potential offshore wind farm location area: 421.48 km²
Hong Kong offshore wind power potential assessment

Data collection from the site near Lamma island
Hong Kong offshore wind power potential assessment

Input Data Source for the Selected Offshore Wind Farm

Wind in the offshore wind farm near Lamma Island

One year’s wind data measured by The Hongkong Electric Co., Ltd. (HK Electric) has been used for the wind power potential analysis.
Wind turbine:

5 MW wind turbine is selected.

<table>
<thead>
<tr>
<th>Name of parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hub height z (m)</td>
<td>85</td>
</tr>
<tr>
<td>Wind turbine rotor R (m)</td>
<td>63</td>
</tr>
<tr>
<td>Downstream rotor radius R_d (m)</td>
<td>77.06</td>
</tr>
<tr>
<td>Turbine thrust coefficient C_T</td>
<td>0.7486</td>
</tr>
<tr>
<td>Roughness length of ground z_0 (m)</td>
<td>0.001</td>
</tr>
<tr>
<td>The entrainment constant α</td>
<td>0.044</td>
</tr>
<tr>
<td>The axial induction factor a</td>
<td>0.249</td>
</tr>
</tbody>
</table>

Power generation:

$$P(v) = \begin{cases}
0; & v < 3.5 \\
5140 \times \exp(-((v - 13.31) / 5.162)^2); & 3.5 \leq v < 13.31 \\
5140; & 13.31 \leq v < 30 \\
0; & v \geq 30
\end{cases}$$
Hong Kong offshore wind power potential assessment

Objective function: Lowest COE

Cost factor calculations:

<table>
<thead>
<tr>
<th>Cost factor(€/MW)</th>
<th>Variables</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbines</td>
<td>Turbine size</td>
<td>1.1*10^6</td>
</tr>
<tr>
<td>Foundation</td>
<td>Water depth(h_w)</td>
<td>$(499h_w^2 + 6219h_w + 311810) \times 1.4 (0 < h_w < 25)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(440h_w^2 + 19605h_w + 901691) \times 1.4 (h_w \geq 25)$</td>
</tr>
<tr>
<td>Grid</td>
<td>The least subsea cost distance d_s (km)</td>
<td>$(0.38d_s + 0.4d_i + 76.6) \times 10^6 / 600$</td>
</tr>
<tr>
<td></td>
<td>The least land cost distance d_i (km)</td>
<td></td>
</tr>
<tr>
<td>O&M</td>
<td>Least cost distance to service harbour d (km)</td>
<td>$(0.29d^2 + 159d + 50415) \times 0.4$</td>
</tr>
<tr>
<td>Other</td>
<td>The percentage of investment costs</td>
<td>10%</td>
</tr>
</tbody>
</table>

COE calculations: \[COE = \frac{C_e \cdot FCR + C_{O&M}}{AEP} \]

- Fixed Charge Rate = 15%
- The wind farm is operating 24 hours a day
- The price for electricity is 0.143USD/kWh = 1.45HKD/kWh
Hong Kong offshore wind power potential assessment

Optimization results of the selected wind farm near Lamma Island and the assessment of Hong Kong offshore wind power potential

<table>
<thead>
<tr>
<th>Number of WTs</th>
<th>Total Power (10^8 kWh)</th>
<th>Total Cost (10^8 HKD)</th>
<th>COE (HKD/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>5.78</td>
<td>27.24</td>
<td>1.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Offshore wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power potential</td>
<td>14449 GWh</td>
</tr>
<tr>
<td>Proportion of electricity use in HK in 2014</td>
<td>32.91%</td>
</tr>
<tr>
<td>Saving coal's importation</td>
<td>33374845</td>
</tr>
<tr>
<td>Proportion of importation coal</td>
<td>53.79%</td>
</tr>
<tr>
<td>Saving natural gas's importation</td>
<td>4531514</td>
</tr>
<tr>
<td>Proportion of importation natural gas</td>
<td>156%</td>
</tr>
<tr>
<td>COE (HKD/kWh)</td>
<td>~1.5</td>
</tr>
</tbody>
</table>
Determination of the optimal layout patterns

<table>
<thead>
<tr>
<th>WF configuration</th>
<th>WT layout distance</th>
<th>APG ($\times 10^6$ kWh)</th>
<th>WT numbers</th>
<th>APG per WT ($\times 10^6$ kWh)</th>
<th>LCOE (HK$/kWh)$</th>
<th>WFE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aligned WF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5D x 11.0D</td>
<td>5.48</td>
<td>28</td>
<td>19.56</td>
<td>1.474</td>
<td>86.84</td>
<td></td>
</tr>
<tr>
<td>14.5D x 11.5D</td>
<td>5.57</td>
<td>28</td>
<td>19.90</td>
<td>1.475</td>
<td>88.37</td>
<td></td>
</tr>
<tr>
<td>14.5D x 8.5D</td>
<td>6.58</td>
<td>36</td>
<td>18.29</td>
<td>1.476</td>
<td>81.15</td>
<td></td>
</tr>
<tr>
<td>14.5D x 9.0D</td>
<td>6.56</td>
<td>36</td>
<td>18.22</td>
<td>1.478</td>
<td>80.93</td>
<td></td>
</tr>
<tr>
<td>14.0D x 9.5D</td>
<td>6.33</td>
<td>32</td>
<td>19.78</td>
<td>1.480</td>
<td>87.85</td>
<td></td>
</tr>
<tr>
<td>14.5D x 12.0D</td>
<td>5.44</td>
<td>28</td>
<td>19.44</td>
<td>1.483</td>
<td>86.31</td>
<td></td>
</tr>
<tr>
<td>14.5D x 10.0D</td>
<td>6.39</td>
<td>32</td>
<td>19.95</td>
<td>1.484</td>
<td>88.59</td>
<td></td>
</tr>
<tr>
<td>15.0D x 12.0D</td>
<td>5.32</td>
<td>28</td>
<td>19.00</td>
<td>1.484</td>
<td>84.35</td>
<td></td>
</tr>
<tr>
<td>14.0D x 12.0D</td>
<td>5.44</td>
<td>28</td>
<td>19.43</td>
<td>1.489</td>
<td>86.25</td>
<td></td>
</tr>
<tr>
<td>12.0D x 11.5D</td>
<td>6.84</td>
<td>35</td>
<td>19.54</td>
<td>1.491</td>
<td>86.74</td>
<td></td>
</tr>
<tr>
<td>Staggered WF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5D x 11.0D</td>
<td>5.43</td>
<td>28</td>
<td>19.39</td>
<td>1.467</td>
<td>86.07</td>
<td></td>
</tr>
<tr>
<td>14.5D x 8.5D</td>
<td>6.57</td>
<td>34</td>
<td>19.33</td>
<td>1.473</td>
<td>85.80</td>
<td></td>
</tr>
<tr>
<td>14.0D x 9.5D</td>
<td>6.33</td>
<td>32</td>
<td>19.29</td>
<td>1.476</td>
<td>85.59</td>
<td></td>
</tr>
<tr>
<td>14.0D x 11.0D</td>
<td>5.38</td>
<td>28</td>
<td>19.21</td>
<td>1.480</td>
<td>85.30</td>
<td></td>
</tr>
<tr>
<td>14.5D x 9.5D</td>
<td>6.13</td>
<td>32</td>
<td>19.16</td>
<td>1.485</td>
<td>85.08</td>
<td></td>
</tr>
<tr>
<td>14.5D x 10.0D</td>
<td>5.74</td>
<td>30</td>
<td>19.13</td>
<td>1.487</td>
<td>84.95</td>
<td></td>
</tr>
<tr>
<td>14.5D x 9.0D</td>
<td>6.50</td>
<td>34</td>
<td>19.12</td>
<td>1.489</td>
<td>84.92</td>
<td></td>
</tr>
<tr>
<td>14.5D x 11.5D</td>
<td>4.94</td>
<td>26</td>
<td>19.00</td>
<td>1.497</td>
<td>84.36</td>
<td></td>
</tr>
<tr>
<td>15.0D x 10.0D</td>
<td>5.69</td>
<td>30</td>
<td>18.97</td>
<td>1.500</td>
<td>84.23</td>
<td></td>
</tr>
<tr>
<td>12.0D x 11.0D</td>
<td>6.65</td>
<td>35</td>
<td>18.99</td>
<td>1.501</td>
<td>84.34</td>
<td></td>
</tr>
<tr>
<td>Scattered WF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>6.29</td>
<td>30</td>
<td>20.97</td>
<td>1.290</td>
<td>93.12</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5.55</td>
<td>27</td>
<td>20.57</td>
<td>1.315</td>
<td>91.34</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5.32</td>
<td>26</td>
<td>20.48</td>
<td>1.321</td>
<td>90.94</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>5.73</td>
<td>28</td>
<td>20.47</td>
<td>1.322</td>
<td>90.90</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>7.84</td>
<td>39</td>
<td>20.10</td>
<td>1.346</td>
<td>89.25</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>6.61</td>
<td>33</td>
<td>20.03</td>
<td>1.351</td>
<td>88.94</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>6.96</td>
<td>35</td>
<td>19.88</td>
<td>1.361</td>
<td>88.28</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>4.97</td>
<td>25</td>
<td>19.86</td>
<td>1.362</td>
<td>88.19</td>
<td></td>
</tr>
</tbody>
</table>
The year 2015 is the first time that offshore turbines were decommissioned. At one offshore wind farm of UK, the other five were installed at Sweden. In the year 2016, the decommissioned offshore wind capacity were approximately 520 MW.

The unexpected increase in decommissioning costs is a crucial factor that cannot be ignored as for the huge economical burden.

Some institutes estimate it will cost €200,000-500,000/MW, equals to 60-70% of installation costs (DNV GL) or 2.5% of the total project cost (The Contact Programme) to decommission offshore turbines.

The life expectancy of the offshore wind turbine is around 25–30 years. However, the foundation is always overdesigned.

It is possible and meaningful to develop the decommissioning strategy to reduce the cost from the initial design phase of an offshore wind farm.
Decommissioning Strategy

When the first generation offshore wind turbines are decommissioned, foundations can still be on service after some strengthen strategies in the second generation.

\[\text{Cost}_{\text{total}} = \text{Cost}_{\text{capital}} + \text{Cost}_{O&M} + \text{Cost}_{\text{levelised}} \]

- Wind Turbine costs, foundation costs, installation, grid connection cost and decommissioning cost;
- Operation and maintenance costs;
- Related to wind, varies depending on the wind resource and project costs, but at good wind sites can be very competitive.

Decommissioning Strategy

When the first generation offshore wind turbines are decommissioned, foundations can still be on service after some strengthen strategies in the second generation.

\[\text{Cost}_{\text{capital}} = \text{Cost}_{WT1} + \text{Cost}_{f1} + \text{Cost}_{\text{install1}} + \text{Cost}_{\text{strengthen}} + \text{Cost}_{WT2} + \text{Cost}_{\text{install2}} + \text{Cost}_{\text{decommission2}} \]

Offshore Wind Farm Optimization

The wind turbine layout optimizing process is based on the Multi-Population Genetic Algorithm (MPGA). The Cost of Energy (COE) is regarded as the criteria to judge the new method. The COE is on account of two generations’ energy output and total cost.
Application of Decommissioning Strategy

Waglan Island Sea Area
Selected area: $3740m \times 5828m$

Wind data source: Royal Observatory, Hong Kong

Potential Offshore Wind Farm Selections
(Gao. et al)

Wind Velocity Frequency Distribution in Waglan Island Sea Area

Parameters of Wind Turbines

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Turbine1</th>
<th>Turbine2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power</td>
<td>2.5MW</td>
<td>1.65MW</td>
</tr>
<tr>
<td>Cut-in wind speed</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Rated wind speed</td>
<td>11.1</td>
<td>10.5</td>
</tr>
<tr>
<td>Cut-out wind speed</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Rotor diameter</td>
<td>108</td>
<td>88</td>
</tr>
<tr>
<td>Hub height</td>
<td>80</td>
<td>70</td>
</tr>
</tbody>
</table>

Wind Turbine Power Curves
Application of Decommissioning Strategy

Results of Optimized Layouts

<table>
<thead>
<tr>
<th></th>
<th>Convention strategy</th>
<th>Decommissioning strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of wind turbine</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Service years</td>
<td>2×20</td>
<td>40</td>
</tr>
<tr>
<td>Energy yield (Gw·h)</td>
<td>2×7.55×10³</td>
<td>13.18×10³</td>
</tr>
<tr>
<td>Total cost (MHKD)</td>
<td>2×8.96×10³</td>
<td>13.47×10³</td>
</tr>
<tr>
<td>COE (HKD/Kw·h)</td>
<td>1.19</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram: Optimized Layout and Wind Turbine Power

- (with Decommissioning Strategy)
Study on wind turbine wake model

Three assumptions:

1. The same radius: \(2.58\sigma = r_x \)

2. When \(r = r_x \):
 \[
 A \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(-r)^2}{2\sigma^2}} \right) + B = u_0
 \]

3. The same mass flux:
 \[
 \int_{-r}^{r} \left(A \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y)^2}{2\sigma^2}} \right) + B \right) dx = u^* \cdot 2r_x
 \]

\[\text{Jenson: } \frac{\Delta u}{u_0} = \left(1 - \sqrt{1 - C_T} \right) \left(1 + 2kx/d_0 \right)^2\]

\[\text{Jenson-Gaussian: } u = A \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{-r^2}{2\sigma^2}} \right) + B\]

\[\left\{ \begin{array}{l}
u^* = u_0 \left[1 - 2\alpha / (1 + kx / r_1)^2 \right] \\
u = u_0 - (u_0 - u^*) \frac{5.16}{\sqrt{2\pi}} e^{-\frac{-r^2}{2(\frac{r_2}{2.58})^2}}
\end{array} \right.\]
Improved Wake Model: new development

Wake decay constant k was effected by *ambient turbulence level* o that the turbine induces turbulence!

Before modified k, *turbulence model* should be improved.

Frandsen et al.’s model, 1996

$$I_{\text{wake}} = \sqrt{K_n \frac{C_T}{(x/D)^2} + I_0^2}$$

Tian et al.’s model, 2015

$$I_{\text{wake}} = K_n \frac{C_T}{x/D} + I_0$$

I_{wake} is determined by the I_0, C_T and x/D.

Proposed turbulence model:

$$I_{\text{wake}} = \left(K_n \frac{C_T}{(x/D)^{0.5}} + I_0^{0.5} \right)^2$$
Improved Jenson-Gaussian Wake Model: Development

Using this equation to calculate k_{wake}:

$$k_{\text{wake}} = k \frac{I_{\text{wake}}}{I_0}$$

Replacing wake decay constant k in the Jenson-Gaussian wake model using k_{wake}

Improved Jenson-Gaussian wake model:

$$\begin{cases} u^* &= u_0 \left[1 - 2a/(1 + k_{\text{wake}} r^2/\sigma_1^2) \right] \\ u &= u_0 - (u_0 - u^*) \frac{5.16}{\sqrt{2\pi}} e^{-\frac{r^2}{2(\sigma_2/\sigma_{2.58})^2}} \end{cases}$$
Turbine wake model development

Improved Jenson-Gaussian Wake Model: Validation

With previous models and data from field experiment (Taylor’s study of Nibe site). Two turbines, 45m hub height, 40 diameters, wind speed of 8.55m/s.

‘Qualified’ good performance is obtained by the improved Jenson-Gaussian wake model!
Turbine wake model development

Analytical Wake Model for Multiple Turbines in Row:

superposition

Wake model of single turbine:

\[
\begin{align*}
 u^* &= u_0 \left[1 - \frac{2a}{1 + k_{\text{wake}} x / r_1} \right] \\
 u &= u_0 - b \cdot \exp \left[-\frac{(r - r_x)^2}{2s_w^2} \right]
\end{align*}
\]

\[b = (u_0 - u^*) \frac{5.16}{\sqrt{2\pi}}\]

\[s_w = r_x / 2.58\]

Wake model of two turbines:

\[
\begin{align*}
 u^* &= u_0 \left[1 - \frac{2a}{1 + k_{\text{wake}} x / r_1} \right] \\
 u &= u_0 - b_1 \exp \left[-\frac{(r - r_{c1})^2}{2s_{w1}^2} \right] - b_2 \exp \left[-\frac{(r - r_{c2})^2}{2s_{w2}^2} \right]
\end{align*}
\]

Wake model of multiple turbines:

\[
\begin{align*}
 u^* &= u_0 \left[1 - \frac{2a}{1 + k_{\text{wake}} x / r_1} \right] \\
 u &= u_0 - b_1 \exp \left[-\frac{(r - r_{c1})^2}{2s_{w1}^2} \right] - \cdots - b_n \exp \left[-\frac{(r - r_{cn})^2}{2s_{wn}^2} \right]
\end{align*}
\]
Field experiment

CWEX-13 Field Experiment:

- 300 MW of GE 1.5 XLE
 (80m hub height, 80m D)
- Three profiling lidars (WindCUBEv1)
 - WS and WD at 1 Hz; 40m to 220m above the surface; 29 June – 5 Sept, 2013
- One scanning lidar (WindCUBE 200S)
 - Line-of-sight (LOS) velocities from six elevations of PPI scans
Validation for the Multiple Wakes of Turbines in Row Fitting and Validation

Velocity deficit: \[VD = \left(\frac{u - (u - \alpha)}{u} \right) \times 100\% = \frac{\alpha}{u} \times 100\% \]

Wake width: \[\omega = 4s_w \]
Field experiment & findings

Multiple Wakes’ Characteristics under Different Atmospheric Conditions

Comparisons between measured data and modeled

(a) $R^2=0.64$
\[Y=0.84X+0.70 \]

(b) $R^2=0.49$
\[Y=1.19X-27.92 \]
Field experiment & findings

Multiple Wakes’ Characteristics under Different (ACs)

- Velocity deficit

Summarizes:

• Velocity deficit, 55% for outer turbine and 70% for inner ones.
• No differences after the downwind distance of 5D.
• The VD of the inner one is 1.15-fold of VD caused by the outer turbine.
• Wakes from the outer turbines erode faster than that from the inner ones.
Multiple Wakes’ Characteristics under Different ACs

- Velocity deficit under different atmospheric stabilities

Summarizes:

Few influence of the atmospheric stabilities on the velocity deficit can be observed. Still the inner wakes have bigger velocity deficit than that of the outer wakes in both stable and unstable conditions.
Multiple Wakes’ Characteristics under Different ACs

- Wake width

Summarizes:

- Wake width, in the range of 1.5D-2.0D.
- The WW of the inner one is 0.87-fold of WW caused by the outer turbine.
4. Field experiment & findings

Multiple Wakes’ Characteristics under Different ACs

- Wake width under different atmospheric stability

Summarizes:

The outer wakes expand more than the inner wakes under unstable atmospheric conditions while there is no significant difference between the widths under stable conditions.
4. Field experiment & findings

Multiple Wakes’ Characteristics under Different ACs
- Wake centerline

Summarizes:

Night on August 23 from 10:26:00 to 12:09:33 UTC, the wind direction was in the range 153°-160°. The centerlines have the same trend after the row of turbines.
Study on wind turbine layout optimization

1. Basic Models for the Optimization Program Development

Optimal layout pattern can increase power generation and reduce COE.

Wake model: \[u_i = u_0 \times \left[1 - \sqrt{\sum_{j=1}^{N} \left(1 - u / u_0 \right)^2} \right] \]

Power generation: \[P = C_p(\lambda, \beta) \rho A u^3 / 2 \]

Cost model: \[\text{COST} = N \times \left[\frac{2}{3} + \frac{1}{2} e^{-0.00174 N^2} \right] \]

Wind farm efficiency: \[\eta_{WF} = \sum_{i=1}^{N} 0.3 \times u_i^3 / N \times (0.3 \times u_0^3) \]

Wind Conditions:

<table>
<thead>
<tr>
<th>Case NO.</th>
<th>Case description</th>
<th>Wind speed(m/s)</th>
<th>Wind Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant Wind Speed; Fixed Wind Direction</td>
<td>12</td>
<td>Fixed 0°</td>
</tr>
<tr>
<td>2</td>
<td>Constant Wind Speed; Variable Wind Direction</td>
<td>12</td>
<td>equal probability 0-360°</td>
</tr>
<tr>
<td>3</td>
<td>Variable Wind Direction; Variable Wind Direction</td>
<td>8,12,17</td>
<td>Seen from the following Figure</td>
</tr>
</tbody>
</table>
5. Turbine layout optimization program development

2. Velocity calculation based on wake effect

Calculate the velocity deficit when the WD in the range of $[0, \pi/2)$, $[\pi/2, \pi)$, $[\pi, 3\pi/2)$ and $[3\pi/2, 2\pi)$, respectively.

Two steps: 1. Check wake number and 2, calculate velocity
5. Turbine layout optimization program development

3. Program design

Multiple Population Genetic Algorithm (MPGA) is used

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population number</td>
<td>10</td>
</tr>
<tr>
<td>Probability of crossover</td>
<td>0.7-0.9</td>
</tr>
<tr>
<td>Probability of mutation</td>
<td>0.001-0.05</td>
</tr>
<tr>
<td>Number of individual</td>
<td>40</td>
</tr>
<tr>
<td>The least keeping generations</td>
<td>500</td>
</tr>
<tr>
<td>Binary digits of variable</td>
<td>20</td>
</tr>
</tbody>
</table>

START

Initialize wind data, wind farm boundary, number of wind turbines and wind turbine characters

Set number of solutions in one solution set (population size), and optimization criteria, objective function

Random given the X and Y coordinates of N wind turbines, sorts the Y coordinates, checks wake effect of every wind turbine and calculates local velocity of every wind turbine

Calculate the power generation of wind farm and the objective function value (COE) of each solution (individual) and keep it in MPGA

Optimization criteria (best value of objective function keeping for 500 generation) achieved?

Yes

Display results for best solution from the final solution set, output the value of COE, power generation and optimal coordinates of wind turbine, output the fitness curve during the optimization process and the wind turbine layout

STOP

No

New set of solution (population) is finalized
6. Determination of the optimal layout pattern and power potential in Hong Kong offshore

6. Three layout patterns: Scattered, aligned and staggered

- From the aspect of engineering, turbines are recommended to be installed in arrays.
- 7D -12D in prevailing wind direction (PWD) and 5D-10D in crosswind direction (CWD) (Huang et al. 2012).
- No recommendations about Hong Kong offshore.

North Carolina offshore wind farm
6. Determination of the optimal layout pattern and power potential in Hong Kong offshore

6. Results for Aligned and Staggered WF Configurations

6.1 Energy Generation: Aligned

AEG (× 10^8 kWh)

AEG per Turbine (× 10^6 kWh)
6. Determination of the optimal layout pattern and power potential in Hong Kong offshore

6. Results for Aligned and Staggered WF Configurations

6.3 Energy Generation: Staggered

AEG ($\times 10^8$ kWh)
AEG per Turbine ($\times 10^6$ kWh)
6. Determination of the optimal layout pattern and power potential in Hong Kong offshore

6. Results for Aligned and Staggered WF Configurations

6.4 Results of COE

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Cost Range (HKD/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aligned</td>
<td>1.5-2.1</td>
</tr>
<tr>
<td>Staggered</td>
<td>1.5-2.2</td>
</tr>
</tbody>
</table>
6. Determination of the optimal layout pattern and power potential in Hong Kong offshore

6. Results for Aligned and Staggered WF Configurations

6.5 Results of Wind farm efficiency

Aligned (HKD/KWh)

Staggered (HKD/KWh)
6.6 Optimal Turbine Number for Scattered WF Configurations

Wind turbine numbers in scattered wind farm

P P
Conclusions

- Wind power develops fast and offshore wind power can provide meaningful power supply to coastal urban areas for renewable energy applications.

- The annual offshore wind power generation could be 40.8×10^8 kWh in Hong Kong, which accounts for 32.9% of the local annual electricity consumption in 2012.

- The developed 2-dimensional wake model is a new development in this professional area.

- The MPGA optimization program has been successfully developed and validated, which is a useful tool in wind farm micro-siting and power generation prediction.

- Decommissioning costs should be included for life-cycle cost analysis.
Thanks

Q & A