The Roles of Blockchain in Strengthening Security of the Internet of Things

Nir Kshetri
Professor
The University of North Carolina- Greensboro

Session: Cybersecurity and Cybercrime: New tools for better cyber protection
IoT insecurity a key concern

- October 2016 cyberattacks on DNS provider Dyn.
- Attacks originated from "tens of millions of IP addresses".
- At least some of the malicious traffic from IoT devices:
 - webcams, baby monitors, home routers and DVRs.
- Infected with Mirai.
 - easy-to-use program.
 - controls online devices: uses them to launch DDoS attacks.
 - phishing emails to infect a computer or home network.
 - spreads to other devices
A comparison of cloud and blockchain

<table>
<thead>
<tr>
<th>Mechanisms related to efficiency, and cost-effectiveness</th>
<th>Cloud</th>
<th>Blockchain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud’s pay as you go model: better than legacy system (building capacity by buying more computers, more software and hiring more people) Cloud’s IaaS</td>
<td></td>
<td>Blockchain removes the need for third parties in transactions by creating a distributed record which is possessed and verified by other users.</td>
</tr>
</tbody>
</table>

| Deployment models | Private, community and public | Permissionless/permissioned chains: security, privacy, and other requirements Possible to target specific members: regulators and auditors |

| Some mechanisms to strengthen cybersecurity | C“cyber risk free zone”: constant monitoring for suspicious activities and real time response. Data encrypted Some companies (e.g., google) employ “Zero Trust” network: fine-grained control | Data fully encrypted Cryptographic hash functions |

| Some challenges | Many rely rely on the firewall model. | Newness: well-developed security mechanisms have not developed for some systems |
Blockchain’s potential to address key challenges associated with cloud-based IoT

<table>
<thead>
<tr>
<th>Challenge of cloud-based IoT</th>
<th>Explanation</th>
<th>How blockchain can help to address the problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs and capacity constraints</td>
<td>Exponential growth in IoT devices: by 2020, a network capacity at least 1k times 2016 level needed.</td>
<td>No need of a centralized entity: Devices can communicate securely, exchange value with each other and execute actions automatically through smart contracts.</td>
</tr>
<tr>
<td>Deficient architecture</td>
<td>Each block of IoT architecture acts as a bottleneck/point of failure, and disrupts the entire network: vulnerability to DDoS attacks, hackings, data thefts, and remote hijackings.</td>
<td>Secure messaging between devices: validity of a device’s identity is verified, transactions are signed and verified cryptographically to ensure that only the originator of the message could have sent it.</td>
</tr>
<tr>
<td>Server downtime and unavailability of services</td>
<td>Servers are sometimes down due to cyberattacks, bugs, power, cooling or other problems.</td>
<td>No single point of failure: records on many computers/devices, identical information.</td>
</tr>
<tr>
<td>Susceptibility to manipulation</td>
<td>Information is likely to be manipulated and put to inappropriate uses</td>
<td>Decentralized access and immutability: malicious actions can be detected and prevented. Devices are interlocked: If one device’s updates are breached, the system rejects it.</td>
</tr>
</tbody>
</table>
Blockchain-based identity and access management systems

- Dyn: IP spoofing attacks in the later versions of Mirai.
- Blockchain-based identity/access management: strong defense.
 - Immutability: original information entered is accurate
- Devices cannot connect by disguising/injecting fake signatures.
 - Filaments’ Taps
- Used to store information: goods’ provenance, identity, credentials, digital rights.
- Properties are stored securely and reliably
 - physical assets and individuals (credentials)
 - resource use (energy and bandwidth through IoT devices)
 - other relevant events.
- A private blockchain: store cryptographic hashes of device firmware.
 - a permanent record of device configuration and state.
 - verify that a device is genuine/ software/settings not tampered.
Blockchain’s role in improving security in supply chain networks

- IoT-linked security crises (e.g., Dyn) could have been handled in a better way with blockchain.
- China’s Hangzhou Xiongmai Technologies recalled products sold in the U.S.
 - difficult to track down the owners/contact.
- Blockchain: register time, location, price, parties involved, and other relevant information.
 - track raw materials, transformed into circuit boards/electronic components, integrated into products, sold.
- Blockchain: register updates, patches, and part replacements
Blockchain’s role in improving the overall security in supply chain networks (contd.)

Upstream supply chain partners
- Tracing back products to the origin of the raw material
- Pinpointing the source of problematic parts/items

Device manufacturers/Network providers

Downstream supply chain partner/device owners
- Identifying users of vulnerable devices
- Guaranteeing return of products in case of recalls
- Registering updates, patches, and part replacements throughout the lifetime of a product
Key points

- Blockchain: cybercriminals’ and data manipulators’ nightmare
 - can save from “another Flint-like contamination crisis”
 - smart water meters diffusing rapidly (20% in California)
 - Washington Suburban Sanitary Commission (WSSC): integrate IoT.
 - upgrade with sensors--near-infrared reflectance spectroscopy (NIRS) to include data on chemical levels

- Outperforms cloud in many aspects

- Secure storage and transmission of digitally signed documents: killer application of blockchain
 - identity and access management to stop IP spoofing attacks

- Improve security of forward and backward linkages in supply chain
Thank you