Ad Hoc Expert Meeting on

Climate Change Adaptation for International Transport: Preparing for the Future

16 to 17 April 2019

Climate Adaptation in the Arctic Area: Shipping and Port Infrastructures

Presentation by

Adolf Ng
Professor of Transportation and Supply Chain Management
University of Manitoba

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the views of the UNCTAD.
Climate Adaptation in the Arctic Area: Shipping and Port Infrastructures

Adolf K.Y. Ng
Asper School of Business, St. John’s College, University of Manitoba, Canada

Outline

1. INTRODUCTION
2. THE GOOD AND BAD
3. POTENTIAL SOLUTIONS
4. SOCIO-ECONOMIC MODEL FOR THE ARCTIC (SEMA)
5. CRITICAL INFRASTRUCTURES
6. POLICY RECOMMENDATIONS

THE UNIVERSITY OF MANITOBA’S ARCTIC ECONOMICS AND MANAGEMENT TEAM:
Prof. Adolf K.Y. Ng, Dr. Mawuli Afenyo, Dr. Changmin Jiang, Mr. Yufeng Lin
Contact: adolf.ng@umanitoba.ca
The GENICE Project (genice.ca)
Special thanks to Mr. Al Phillips (Al Phillips & Associates)
What is the Arctic?

- Regions around the north pole
- Second largest area by size (13,985,000 km²)
- Area above the Arctic circle (66° 34’ N)
- Any area in high latitudes where average daily temperature does not rise above 10 degree

Picture courtesy: https://nsidc.org/sites/nsidc.org/files/images/arctic_map.gif

Canada in the Arctic

- Second largest Arctic country
- 200,000 Canadians live in the Arctic
- New Arctic Framework under development
 - comprehensive Arctic infrastructure
 - strong Arctic people and communities
 - strong, sustainable and diversified Arctic economies
 - Arctic science and Indigenous knowledge
 - protecting the environment and preserving Arctic biodiversity
 - the Arctic in a global context
Canada in the Arctic

Applies to
- Yukon
- Northwest Territories
- Nunavut
- Inuit Nunangat
- the Nunatsiavut region in Labrador
- the territory of Nunavik in Quebec
- northern Manitoba, including Churchill

The good

- Resource deposits: oil, gas and other minerals
- Increase shipping saving time and money
- Opening up the northern communities

The good

• Nordic Orion NWP voyage from Europe to Asia instead of Panama Canal
 • Saved 4 days (~4000km) and $200,000

From Shanghai to Rotterdam

<table>
<thead>
<tr>
<th>Route</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panama Canal</td>
<td>25,588 km</td>
</tr>
<tr>
<td>Suez Canal</td>
<td>19,550 km</td>
</tr>
<tr>
<td>Northern Sea Route</td>
<td>15,793 km</td>
</tr>
<tr>
<td>Northwest Passage</td>
<td>16,100 km</td>
</tr>
<tr>
<td>Transpolar Route</td>
<td>13,630 km</td>
</tr>
</tbody>
</table>

• Russia currently ahead
 • 5 Arctic ice breakers & 3 nuclear powered ones

• Canada now building 1 ice breaker a fleet of 8 patrol boats

Ship growth in NWP

The bad

• Shorter lengths of ice free months
• Extremely harsh conditions
• Risk of accident during oil and gas exploration and production
• Accidental release during shipping

The bad

- Accidental releases of oil have negative consequences on the marine environment.
- Need to prepare for emergency control and mitigation of oil spills.
- Countermeasures can only be implemented effectively if the fate and transport is better understood.
- Environmental risk assessment: requires fate and transport models.
- Meanwhile the Arctic is an uncertain terrain with many unknowns
 - Harsh: very low temperatures
 - Timely response is a challenge
 - Darkness
 - Seasonal variations

Problem of dealing with the bad

- Modeling oil spill in ice is difficult
- Lack of data in the Arctic
- Limited knowledge
- Comprehensive ecological risk assessment framework needed

Oil spill processes in open water

Oil ice interaction

(after Afenyo et al., 2015)

Courtesy: www.oceanworld.tamu.edu
How will ships be insured going into the Arctic?

- Material ship is made of
- Experience of crew
- Single hull or double hull
- Length of Voyage
- Speed of vessel
- Age of vessel
- Days expected at sea
- Socio-economic consequences

The assessment tools

- Source modelling
- Dispersion modelling
- Partition modelling
- Exposure modelling
 - Socio-Economic Model for the Arctic (SEMA)
Socio-Economic Model for the Arctic (SEMA)

Socio-economic Impacts

- Family separation
- Lack of thrust
- Stress
- Loss of income
- Loss of tourists
- Movement of people in and out of the affected community
- Effect on culture
- Effect on hunting
- Weakened social connection
- Psychological effect on populace
Scenarios matrix & output for SEMA

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Season</th>
<th>Type of oil</th>
<th>Recovery method</th>
<th>Type of ship</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summer</td>
<td>Light</td>
<td>None</td>
<td>small</td>
</tr>
<tr>
<td>2</td>
<td>Summer</td>
<td>Light</td>
<td>None</td>
<td>Large</td>
</tr>
<tr>
<td>3</td>
<td>Summer</td>
<td>Heavy</td>
<td>None</td>
<td>small</td>
</tr>
<tr>
<td>4</td>
<td>Summer</td>
<td>Heavy</td>
<td>None</td>
<td>Large</td>
</tr>
<tr>
<td>5</td>
<td>Summer</td>
<td>Heavy</td>
<td>Dispersant</td>
<td>Small</td>
</tr>
<tr>
<td>6</td>
<td>Summer</td>
<td>Heavy</td>
<td>Dispersant</td>
<td>Large</td>
</tr>
<tr>
<td>7</td>
<td>Summer</td>
<td>Heavy</td>
<td>Instiu-burning</td>
<td>small</td>
</tr>
<tr>
<td>8</td>
<td>Summer</td>
<td>Heavy</td>
<td>Instiu-burning</td>
<td>Large</td>
</tr>
</tbody>
</table>

Socio-economic impact of scenarios

![Socio-economic impact chart]

Significance of SEMA’s outputs

- **FOR DECISION MAKING BY GOVERNMENTS**
- **USE BY INSURANCE COMPANIES**
- **OTHER ENVIRONMENTAL AGENCIES**
Challenges for the Northern Supply Chain – Port and Maritime

- Operating late June to early November
- No port infrastructure
- shallow moorings
- lack of market size at most “ports”
- Port infrastructure is often limited, with vessels using lightering tugs and barges
- Essentially, the sealift brings its own ports on board

Source: Desgagnés

Challenges for the Northern Supply Chain – Road & Rail

- Hard to adapt to a sparse archipelago (both road & rail)
- Where linked to mainland, permafrost and poor substrate limit load capacity (both road & rail)
- construction and maintenance costs are difficult to justify due to sparse markets and difficult conditions (both road & rail)
- insufficient load factors to take advantage of potentially low tonne-kilometre freight rates or GHG benefits (rail)
Arctic/Northern Operating Environment – Road & Rail

Maritime Transportation and Regional Sustainability

Adolf Ng, Jason Monios, Changmin Jiang

Policy Recommendations

• Public involvement in the Arctic is still necessary: how to covert a politically-driven to a (largely) socio-economic-driven system?

• ‘Resilient hearts’ are equally important to Resilient Facilities – a ‘balanced’ approach to Arctic development is necessary, including the installment of shipping-related facilities.

• ‘Specialization’ in different Arctic areas would ensure the optimal use of limited resources
Effects of Remoteness and Sparse Markets on Public Sector GDP Equilibrium

A ‘Balanced’ Approach to Arctic Development