Ad Hoc Expert Meeting on

Climate Change Adaptation for International Transport: Preparing for the Future

16 to 17 April 2019

Evidence based approach to holistic risk analysis

Presentation by

Simon Hodgkinson
Research Fellow
University of Birmingham

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the views of the UNCTAD.
Evidence based approach to holistic risk analysis

Simon Hodgkinson
University of Birmingham

Risk = f(Hazard, Vulnerability, Consequence)

Hazardous Weather
e.g. extreme heat

Vulnerable Elements
e.g. assets and services

Consequence of Failure
e.g. organisation, users or stakeholders
• How is the UK climate and weather going to change in the future?

• What are the impacts of climate change and extreme weather going to be on the GB railway?

• What is being done already or can be done about the impacts of climate change and extreme weather?

• How can we evaluate the cost and benefits of dealing with impacts of climate change and extreme weather?
Consequence

What is the purpose of a railway? Who are the users and stakeholders?

- Passenger / Freight mobility
- Economic and Social activity
- Environmental mitigation (modal shift)
- It provides a service...
- ...which can sometimes fail (risk)
- Investment / maintenance / renewal / repair activities are justified by mitigating risk
Key metrics in modern rail

- Public Performance Measure (PPM)
- % of trains arriving “On Time”
- Trains are punctual if they are ≤5 mins late for short-distance and ≤10 mins late for long-distance

Key metrics in modern rail

- Cancellations and Significant Lateness (CaSL)
- % of trains which arrive at final destination > 30 mins from planned arrival, or full/part cancelled or missed calls
Delay Minutes

- Total annual Network Rail-caused delay minutes (by category group)

Life can only be understood backwards...

- Delay minutes (and thus PPM/CaSL)
 - Excludes ‘severe’ weather
 “no reasonable or viable economic mitigation was possible against the impact of the weather” (DAB 2014)
 - Calculated verses a daily timetable
 - Poor links to infrastructure condition or cause
 - Therefore not a basis on which to make adaptation (i.e. investment) decisions
 - “Past performance is not indicative of future results”
...but it must be lived forwards

Søren Kierkegaard

What is required:

- basis for adaptation decision making
- scalability across the industry
 - local identification of ‘critical’
 - strategic choices about service
 - next week to next century
- inclusive of different/external stakeholders and interdependencies...

Identifying risks to improve resilience

- Unplanned events (eg. extreme weather) and asset breakdown may disrupt network operations and impact service levels
- Twin challenge of day-to-day incident response & maintenance along with long-term upgrades/renewals
- With finite resources there is a need for efficient resource allocation to prioritise interventions/actions

Allocating resources to high risk locations promotes:

- Value-for-money
- Focused risk management = Improved resilience
Network Criticality

- Identify location-based single points of failure – formalise priority locations with high service performance risk to aid decision-making for resource allocation
- Regional-scale assessment – relative priorities for management regions at high level of granularity
- Based on observed fault/disruption data – captures network behaviour (NR TRUST system) through metrics of asset failure consequence as delay minutes

Infrastructure Service Availability

- In this case ‘journey (un)availability’
- Probability that a given ‘element’ of the system will cause N minutes delay
 - 2 minutes / 5 minutes / 20 minutes
 - May be stakeholder specific

Probability of delay

- Normal
- Adverse
- Critical

Hazard ‘amount’
...it is the journey that matters

- Individual JA/criticality for ‘elements’ can be quantified
 - specific high-vulnerability elements identified and targeted for adaptation in a consistent way
- The vulnerability of a route can be quantified
 - combination of elements along that route
 - for a typical ‘basket’ of hazards (‘stress-testing’)
- The vulnerability of regions, or nationally
 - aggregation of routes
 - weighted by passenger- or service-numbers
 - weighting factors for different stakeholders
 - Infrastructure only
 - Rolling-stock, staffing, stations etc.

Network Rail CP6 Metrics

- Station to station
- Minute to minute
- “Whole journey” focus
- % of trains arriving to the minute at every station from ‘early’ through to ‘30 minutes after’ the timetable
- On Time - % of station stops where train arrived <1min late
- Cancellations - % trains cancelled
Including interdependencies in criticality...

Cross-sector asset information and locations – where are assets and how are they connected?

Cross-sector network criticality – spatial correlations in risk?

Cross-sector consequence metrics – similar fault reporting and service impacts? Where are the system boundaries?
The future depends on what you do today

Mahatma Gandhi

- Poor assumptions:
 - Engineers are representative of general public
 - The future will be just like today (but with extra widgets)
 - Future patterns of service use, climate, maintenance, adaptation measures and/or new services / infrastructure can be evaluated with system modelling

Recommendations

- Identifying failure pathways (from root cause, to failure, to consequence)
- Multiple perspectives/stakeholders (organisations, passengers, governance)
- System-wide – elements beyond infrastructure (people and operations)
- Role of sensing/IoT – observe weather/hazards and asset condition?
- Data and information sharing/requirements? (asset location and condition information)
- Develop new/standardise metrics – role of regulators? e.g. ORR
- End to end journeys across modes and interdependencies
- What is the best for system users/passengers?
Thanks to:
Dr Andrew Quinn, Prof Lee Chapman, Dr Simon Bell,
Rachel Fisher, Dr Emma Ferranti, Dr David Jaroszewski