LDCR 2014

Growth with Structural Transformation: A post-2015 development agenda

Discussant: Dr. Gaaitzen de Vries
Groningen Growth and Development Centre
Faculty of Economics and Business
University of Groningen
Structural change, narrowly defined here as the reallocation of labor across sectors, featured prominently in earlier analyses of economic growth (Kuznets, 1966; Chenery et al. 1986).

It is receiving renewed attention (Timmer and de Vries, 2009; IADB 2010; McMillan and Rodrik, 2011; De Vries et al. 2014).

LDCR 2014 first comprehensive study on structural change in LDCs
Data

The dynamics of structural change

...looking ahead
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BWA</td>
<td>3.6</td>
<td>1.0</td>
<td>1.5</td>
<td>0.7</td>
<td>1.4</td>
<td>0.5</td>
<td>0.5</td>
<td>7.0</td>
<td>1.5</td>
</tr>
<tr>
<td>ETH</td>
<td>0.3</td>
<td>1.0</td>
<td>1.5</td>
<td>0.7</td>
<td>1.4</td>
<td>0.5</td>
<td>0.5</td>
<td>7.0</td>
<td>1.5</td>
</tr>
<tr>
<td>GHA</td>
<td>11.2</td>
<td>12.9</td>
<td>16.3</td>
<td>21.5</td>
<td>6.6</td>
<td>8.9</td>
<td>2.3</td>
<td>13.1</td>
<td>2.9</td>
</tr>
<tr>
<td>KEN</td>
<td>56%</td>
<td>9%</td>
<td>12%</td>
<td>16%</td>
<td>21%</td>
<td>6%</td>
<td>22%</td>
<td>53%</td>
<td>52%</td>
</tr>
</tbody>
</table>

Difference in coverage between two data sets: GGDC (which covers informal employment) and UNIDO (which is mostly formal, registered firms)
Groningen Growth and Development Centre

- Compiles comprehensive databases on indicators of growth and development and maintains them on a regular basis

- Amongst others:
 - Penn World Tables (since v. 8.0)
 - World Input-Output Database
 - GGDC 10 Sector Database
 - Africa Sector Database (funded by ESRC/DFID, spring 2012 – spring 2014)
Productivity trend in manufacturing
(USA is 100)
Productivity trend in market services (USA is 100)

<table>
<thead>
<tr>
<th>Employment shares</th>
<th>1960</th>
<th>1975</th>
<th>1990</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>72.9</td>
<td>66.4</td>
<td>62.1</td>
<td>50.8</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>4.7</td>
<td>7.8</td>
<td>8.8</td>
<td>7.5</td>
</tr>
<tr>
<td>Other industries</td>
<td>4.6</td>
<td>5.2</td>
<td>5.3</td>
<td>5.1</td>
</tr>
<tr>
<td>Market services</td>
<td>8.7</td>
<td>10.2</td>
<td>12.8</td>
<td>23.4</td>
</tr>
<tr>
<td>Non-market services</td>
<td>9.1</td>
<td>10.4</td>
<td>11.0</td>
<td>13.3</td>
</tr>
<tr>
<td>All sectors</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Figures are unweighted averages across eleven African countries.
• Shift-share decomposition method to measure the contribution to growth from the reallocation of workers across sectors

• Method decomposes the aggregate change in labor productivity into within and between effects

\[\Delta P = \sum_{i \text{ within effects}} + \sum_{i \text{ between effects}} \]
Decomposition methods

1. McMillan and Rodrik (2011):
\[\Delta P = \sum_i (P_i^T - P_i^0) S_i^0 + \sum_i (S_i^T - S_i^0) P_i^T \]

2. Opposite base and end years:
\[\Delta P = \sum_i (P_i^T - P_i^0) S_i^T + \sum_i (S_i^T - S_i^0) P_i^0 \]

3. Period averages:
\[\Delta P = \sum_i (P_i^T - P_i^0) \bar{S}_i + \sum_i (S_i^T - S_i^0) \bar{P}_i \]

4. If growth and levels are not correlated, a more appropriate decomposition is:
\[\Delta P = \sum_i (P_i^T - P_i^0) S_i^0 + \sum_i (S_i^T - S_i^0) P_i^0 + \sum_i (P_i^T - P_i^0) \cdot (S_i^T - S_i^0) \]
Decomposition results, 1960-2010

<table>
<thead>
<tr>
<th>Decomposition equation used:</th>
<th>Labour productivity growth</th>
<th>Component due to:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Within</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Between Static</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dynamic</td>
</tr>
<tr>
<td>(1)</td>
<td>1.4</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>(2)</td>
<td>1.4</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>(3)</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>(4)</td>
<td>1.4</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.8</td>
</tr>
</tbody>
</table>

Notes: Figures are unweighted averages across eleven African countries. Numbers may not sum due to rounding.
Decomposition results by period

Sub-Saharan Africa

1990-2010
- Between - static: 1.8%
- Between - dynamic: -0.1%
- Within: 2.9%

1975-1990
- Between - static: -2.0%
- Between - dynamic: 0.0%
- Within: 2.0%

1960-1975
- Between - static: 2.0%
- Between - dynamic: 0.0%
- Within: 4.0%

average annual labour productivity growth
Decomposition results by period

Asia

1960-1975
1975-1990
1990-2010

average annual labour productivity growth

-2.0% 0.0% 2.0% 4.0% 6.0%

Within
Between - static
Between - dynamic

4.4% 3.3% 3.1%
Decomposition results by period

Latin America

1990-2010

0.9%

-4.0% -2.0% 0.0% 2.0% 4.0%

average annual labour productivity growth

1975-1990

-0.9%

1960-1975

2.4%

Within
Between - static
Between - dynamic
What has been the role of sectors in explaining these aggregate patterns?

> Requires adjusting the decomposition method

> In current decomposition methods, all expanding sectors contribute positively to changes in aggregate productivity even when they have below-average productivity levels or growth rates.
The decomposition in equation (4) is modified as follows

\[\Delta P = \sum_i^I (P_i^T - P_i^0) S_i^0 + \sum_j^J (S_j^T - S_j^0) (P_j^0 - P_j^{0*}) + \sum_j^J \left((P_j^T - P_j^0) - (P_j^{T*} - P_j^{0*}) \right) (S_j^T - S_j^0) \]

where J is the set of expanding sectors, and K is the set of shrinking sectors, and average labour productivity of shrinking sectors at time T and 0 is given by

\[P_j^{0*} = \frac{\sum_k^K (S_k^T - S_k^0) P_k^0}{\sum_k^K (S_k^T - S_k^0)} \]

\[P_j^{T*} = \frac{\sum_k^K (S_k^T - S_k^0) P_k^T}{\sum_k^K (S_k^T - S_k^0)} \]
Decomposition results, 1990-2010

<table>
<thead>
<tr>
<th>Component due to:</th>
<th>Labor productivity growth</th>
<th>Between</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Within</td>
<td>Static</td>
</tr>
<tr>
<td>Agriculture</td>
<td>0.7%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>0.2%</td>
<td>0.1%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>Other industries</td>
<td>0.6%</td>
<td>0.5%</td>
<td>-0.4%</td>
</tr>
<tr>
<td>Market services</td>
<td>0.1%</td>
<td>1.1%</td>
<td>-1.1%</td>
</tr>
<tr>
<td>Non-market services</td>
<td>0.2%</td>
<td>0.1%</td>
<td>-0.2%</td>
</tr>
<tr>
<td>All sectors</td>
<td>1.9%</td>
<td>1.8%</td>
<td>1.8%</td>
</tr>
</tbody>
</table>

Notes: Figures are unweighted averages across eleven African countries. Numbers may not sum due to rounding.
Looking ahead

DEMAND
- changes in *demand patterns* due to different income elasticity of demand for agricultural products (low), manufactured goods (median), services (high) => ‘Engel’s Law’
- changes in *composition of trade*

SUPPLY
- changes in *composition of production factors* (land, mineral resources, labor, physical capital)

POLICIES
- LDCR 2014: resource mobilization, industry and sector policies, macroeconomic policies

... No single development path
Thank you for your attention

Dr. Gaaitzen de Vries

www.ggdc.net
www.wiod.org