Ad Hoc Expert Meeting on Measuring Shipping Connectivity and Performance: The Need for Statistics and Data, Geneva, May 15 2017





# Big Data versus Small Data: Container Port Traffic and Maritime Connectivity





Jean-Paul Rodrigue Dept. of Global Studies & Geography, Hofstra University, New York, USA

### 'Big Data' versus 'Small Data'

#### Big Data

- Massive quantities.
- Usually collected automatically by sensors.
- Collected in real time.
- Happens 'by accident' as a byproduct of a digital footprint.
- Ex-post usefulness.

#### Small Data

- Limited quantities.
- Collected semi-automatically (often human input).
- Collection delayed by reporting systems (daily, monthly, quarterly, annually).
- Purposefully collected (regulation, reporting, decision making).
- Ex-ante usefulness.







## 1. Container Port Traffic Data

### Big Data is Great, but What About Small Data?

- Frustration about container port traffic data
  - One of the world's most simple and indicative data is not comprehensively available.
  - Port authority web sites are a mess:
    - Often difficult to find traffic data; often out of date.
    - Data published in a variety of inconvenient formats (GIF, PDF).
  - Wide variations in the consistency and level of detail.
  - No standards.
  - Data collection/compilation is usually a manual process.
  - Several regional trade groups collect and maintain data from their constituents:
    - AAPA, ECLAC, ESPO.
  - No international agency has 'claimed the ownership' of the data.

#### Global Container Ports Database

| PORT           | Port name                                                                 |
|----------------|---------------------------------------------------------------------------|
|                |                                                                           |
| UNLOCODE       | United Nations Code for Trade and Transport Locations.                    |
|                |                                                                           |
| STATUS         | Active, Merged, Part, Inactive                                            |
| CITY           | The metropolitan area in which the port is located (or is mainly serving) |
| COUNTRY        | Country                                                                   |
| RANGE          | Maritime range                                                            |
| LONG; LAT      | Longitude and latitude                                                    |
| ALIAS          | Alternate port name (if more than one usual name)                         |
| Port Authority | Name of the port authority                                                |
| Source         | Link to online data source                                                |
| DEDTIL V       | May alongside depth of container terminals, NAIM                          |
| DEPTH_X        | Max alongside depth of container terminals; MLW                           |
| CHANNEL        | MLW Port Channel Depth                                                    |
| REEFER         | Number of reefer slots at the terminal                                    |
| Y_XXXX         | Annual traffic in TEU for year XXXX                                       |

550 active ports totaling 645 M TEU of volume in 2015

# Container Ports and Main Maritime Ranges of the Americas, 2015



#### Net Container Volume Changes in the Americas, 2010 / 2015



# Share of the Maritime Ranges of the Americas in Total Container Volumes, 1990-2015



# Cargo Handled by the Top 5 North American Container Ports, 1985-2015 (in TEUs)



#### Monthly Container Traffic at the Port of Los Angeles, 1995-2017



### Proposal: A Data Template for Automated Data Harvesting

Metadata

**Facilities** 

[Channel] [Depth] [Berths] [Cranes] [RTGs] [Yard] [Capacity]

**Terminal** 

**Container Traffic** 

[Calls] [Total] [Full] [Empty]
[Inbound] [Outbound]
[Transshipment] [40] [40HC]
[20] [Reefer] [Other]

CY, FY, Monthly











# 2. Developing a Global Connectivity Index

### The Components of Connectivity: The 'Bowtie Approach'



### Functional Variations in Connectivity

#### **Hinterland Connectivity**



**Foreland Connectivity** 



### Top 25 Gateways, Global Gateways Index, 2010



#### Connectivity Pattern of the World's Major Maritime Bottlenecks



#### Container Traffic at Main Ports around the Panama Canal



# Container Traffic Handled at the Main Ports Around the Suez Canal



#### Container Traffic at Main Ports around the Strait of Malacca



# Container Traffic Handled at the Main Ports Around the Strait of Hormuz



# Container Traffic Handled at the Main Ports Around the Strait of Gibraltar



# Container Traffic Handled at the Main Ports Around the Strait of Oresund



### Conclusion: Big Data = More Inertia?

