Seychelles

Use of advanced technologies for family agriculture

By:

Mr. Roy Govinden & Mr. Peter Estico

Outline of presentation

- Introduction
 - Country information
 - Climate
 - Agricultural background information
- Use of advanced technologies in agriculture
 - Irrigation technology
 - Use of soil moisture and salinity monitoring sensors
 - Green house Technology
 - Fertigation technology
 - Use of ICT

Challenges and constraints to use of advanced technologies

Country Information

- Archipelago consisting of 115 islands
- Located in the Western part of the Indian Ocean and lie between 4° - 10° South of the equator, and 46° - 57° east
- Spread over an Exclusive Economic Zone (EEZ) of 1.34 million km²
- ▶ Total land area is 455 km²
- Out of the 115 islands, forty-one (41) are of granitic origin
- Main island of Mahe covers an area of 15 539 hectares and is 27 km long by 12 km in width
- Population stand at 93,000

Map of Seychelles

Climate

- Humid tropical climate dominated by patterns of monsoons
- The southeast monsoon (May to October)
 - cool, windy but dry conditions with little rainfall
 - main vegetable growing season
- The northwest monsoon (November to April)
 gentle winds, humid and heavy rainfall
 - difficult season for vegetable production
- Annual mean temperature is about 27° C
- Relative humidity is about 80%
- Average annual precipitation varies between 1700 mm-3000 mm

Agricultural Background Information

- Agriculture in Seychelles is limited by a lack of arable land, two thirds of the available land resources are mountainous and are unsuitable for agricultural activities
- Out of the total land area (45, 539 ha) only about 600ha is allocated for agricultural production
- 75% of the total cultivable land is found on the coast
 - averaging about 2 m above mean sea level
- The remaining 25% consist of land with slopes in excess of 15%

Agricultural Background Information

- Total of 752 farmers farming on both private and state land.
- Main crops produced are vegetables, fruits, root crops, spices and herbs
- All produce are destined for the local market
- Farm sizes ranges between 0.5-2 ha
- 8600 households involved in some form of farming activity

Agricultural Background Information

Predominant soil types are the ferralitic and the calcareous sandy soils.

The ferralitic soil

- Originates from the weathering of granitic rock
- Widely extended over the slopes, hills and mountains
- 70% of the farms under production are cultivating in red soils

Sandy Soil

- Extends on the small plateaus on the coast
- > 20% of farms cultivating in such soils

Use of advanced technologies in agriculture

- Irrigation technology
- Use of soil moisture and salinity monitoring sensors
- Green house Technology
- Fertigation technology
- Use of ICT

Irrigation Technology

- The two major soil types have low water holding capacity
- Hence soils need to be irrigated frequently
- Most farmers irrigate daily
- High water demand and use for irrigation particularly leafy and high value vegetable crops
- Productivity of irrigated land is more than three times that of un-irrigated land

Irrigation Technology

Drip Irrigation

► High value vegetable crops eg: Tomato, Sweet Pepper

Mini Sprinklers

Leafy vegetables eg: Lettuce, Chinese cabbage

Over head Sprinklers

Root crops and fruit trees

Use of soil moisture and salinity monitoring sensors

- Sentek TriScan sensors for the real time monitoring of soil water and salinity
 - Long term monitoring of soil moisture and salinity conditions
 - Establish a baseline of the salinity and soil moisture status as influenced by irrigation and fertilizer management practices
- Make improvements in Irrigation and fertiliser management practices

Green House Technology

- Use of shade houses and green houses adapted to local conditions
- Use of UV resistant plastic cover

Advantages

- Protect against excessive radiation and rainfall
- Minimise impact of pest and diseases
- Extend growing season
- Maximise crop yield and quality

Fertigation Technology

Injection of soluble fertilizers in combination with micro irrigation techniques

Advantages

- Maximize water and fertilizer use efficiency
- Lower energy consumption
- Increase crop yield and quality
- Reduce nitrate losses

Use of ICT

- Mobile-based platform to enable farmers to interact with extension services through SMS
 - The platform enables farmers to ask questions to their extension officers through the short code 9676 and receive instant feedback at no cost
 - Disseminate important extension messages more efficiently and timely through delivery of bulk SMS to specific farmer groups in their native Creole

Challenges and constraints to use of advanced technologies

Education and Training

- Lack of knowledge and inadequate skills of farmers
- Inadequate agricultural extension services
- Limited institutional capacity

Climate and Environmental issues

- Low soil fertility
- Extreme weather conditions (High temperature, extreme rainfall and extended dry periods)
- Economic and Policy
 - High investment costs associated with advanced technologies
 - Lack of money
 - Limited access to credit facilities
 - Low funding for research and innovation

Thank you for your attention!!