# Measuring BEPS: MNEs vs. comparable non-MNEs method Italian case study - Practice

Federico Sallusti Istat

# Building up the dataset

- The database for the analysis is composed of three informative sources:
  - The archive **Frame-SBS**, which includes the information about the structure and economic variables for the whole set of 4.4 millions of firms
  - The archive **COE-TEC** (Integrated International Trade Database), which includes the information about imports and exports (by product and origin/destination country) for the whole set of firms
  - The archive **ASIA-Groups** (Italian version of European EGR), which includes the information about firms involved in domestic and foreign groups
- For each unit in the business system, the final database reports comprehensive information about:
  - The economic and organizational structure
  - The characteristics of its inclusion in the network of international trade
  - If applies, the positioning within MNE groups

# Building up the dataset

- Frame-SBS contains about 4.3 million units for 2019
- COE-TEC cointains about 4.3 million units for 2019 (165515 are internationalised, i.e. positive values of imports and/or exports)
- Asia-Groups contains 233092 units
- Some lilmitation is applied to the dataset (i.e. exclusion of units with 0 workers, value added lower than 0, missing relevant variables, sectors with peculiar characteristics such as tobacco, financial auxiliaries, coke and refineries)
- The final dataset contains 3829908 observation

# Building up the dataset

| Unit ID | NACE  | Workers | Size class | Value added | Turn-over | Salaries | Intermediate<br>costs | Costs for goods | Costs for services | Costs for royalties | Costs for R&D | Costs from<br>sub-<br>contracting | Revenues<br>from sub-<br>contracting | EBIT     | Value of<br>imports | Value of<br>exports | Group ID | Type of group | Nationality of N<br>headquarter | Nationality of<br>units |
|---------|-------|---------|------------|-------------|-----------|----------|-----------------------|-----------------|--------------------|---------------------|---------------|-----------------------------------|--------------------------------------|----------|---------------------|---------------------|----------|---------------|---------------------------------|-------------------------|
| xxx     | kk291 | 8.9     | 2          | 374.3       | 619.1     | 456.7    | 244.8                 | 14.1            | 223.1              | 0.2                 | 0.0           | 0.8                               | 0.1                                  | -82.4    | 0.0                 | 1.8                 |          |               |                                 |                         |
| xxx     | kk220 | 22.1    | 4          | 1634.5      | 2281.5    | 1513.2   | 647.0                 | 319.4           | 207.0              | 0.1                 | 0.1           | 71.1                              | 0.0                                  | 121.3    | 0.0                 | 0.0                 |          |               |                                 |                         |
| xxx     | kk220 | 25.4    | 4          | 1775.9      | 2292.3    | 1902.0   | 516.4                 | 0.0             | 263.7              | 0.1                 | 0.2           | 90.6                              | 0.0                                  | -126.2   | 0.0                 | 0.0                 |          |               |                                 |                         |
| xxx     | kk292 | 10.6    | 3          | 980.4       | 4419.4    | 638.3    | 3439.0                | 1.9             | 3288.8             | 2.4                 | 0.0           | 114.4                             | 14.3                                 | 342.2    | 0.0                 | 16.8                |          |               |                                 |                         |
| xxx     | kk215 | 1.0     | 1          | 29.8        | 77.7      | 15.1     | 47.8                  | 0.0             | 24.1               | 0.0                 | 0.0           | 0.3                               | 0.0                                  | 14.7     | 0.0                 | 0.0                 |          |               |                                 |                         |
| xxx     | kk291 | 8.7     | 2          | 523.1       | 2931.1    | 387.0    | 2408.0                | 5.6             | 2291.2             | 1.8                 | 0.4           | 8.6                               | 0.7                                  | 136.1    | 1.1                 | 58.2                |          |               |                                 |                         |
| xxx     | kk292 | 13.7    | 3          | 575.4       | 12121.5   | 485.4    | 11546.1               | 29.4            | 11361.9            | 8.5                 | 0.0           | 395.2                             | 38.6                                 | 90.0     | 0.0                 | 0.0                 |          |               |                                 |                         |
| xxx     | kk292 | 3.0     | 1          | 112.1       | 855.9     | 95.9     | 743.7                 | 0.7             | 723.0              | 0.3                 | 0.0           | 4.7                               | 0.5                                  | 16.2     | 0.0                 | 9.7                 |          |               |                                 |                         |
| xxx     | kk230 | 8.0     | 2          | 181.7       | 935.4     | 271.2    | 753.7                 | 230.3           | 418.9              | 0.3                 | 0.1           | 1.6                               | 0.2                                  | -89.5    | 2.2                 | 7.5                 |          |               |                                 |                         |
| xxx     | kk219 | 6.8     | 2          | 248.7       | 433.7     | 156.7    | 185.0                 | 37.1            | 123.9              | 0.1                 | 0.0           | 0.5                               | 0.1                                  | 91.9     | 0.0                 | 0.0                 |          |               |                                 |                         |
| xxx     | kk215 | 1.9     | 1          | 18.0        | 75.0      | 1.0      | 57.0                  | 19.7            | 22.1               | 0.0                 | 0.0           | 0.1                               | 0.0                                  | 17.0     | 0.0                 | 0.0                 |          |               |                                 |                         |
| xxx     | kk292 | 323.1   | 7          | 6499.0      | 7044.0    | 11550.0  | 563.0                 | 0.0             | 508.0              | 0.0                 | 0.0           | 0.0                               | 0.0                                  | -5051.0  | 0.0                 | 0.0                 |          |               |                                 |                         |
| xxx     | kk215 | 8.5     | 2          | 1295.0      | 2306.7    | 356.7    | 710.7                 | 13.8            | 585.8              | 0.5                 | 0.1           | 2.2                               | 0.4                                  | 938.3    | 0.0                 | 0.0                 | ZZZ      | MULES         | BE                              | IT                      |
| xxx     | kk292 | 33.8    | 4          | 1626.4      | 8169.8    | 1623.5   | 6543.4                | 54.8            | 5163.7             | 2.1                 | 3.2           | 1774.0                            | 0.0                                  | 2.9      | 0.0                 | 0.0                 | ZZZ      | MULES         | DE                              | IT                      |
| xxx     | kk292 | 4.1     | 1          | 0.0         | 1274.6    | 177.5    | 1383.4                | 11.7            | 1205.0             | 0.1                 | 0.0           | 5.0                               | 0.5                                  | -177.5   | 0.0                 | 0.0                 | ZZZ      | MULES         | DE                              | IT                      |
| xxx     | kk219 | 6.0     | 2          | 461.4       | 659.2     | 355.5    | 197.9                 | 3.8             | 134.6              | 0.1                 | 0.0           | 0.5                               | 0.1                                  | 105.9    | 0.0                 | 0.0                 | ZZZ      | MULES         | NL                              | IT                      |
| xxx     | kk101 | 19.7    | 3          | 3543.2      | 11669.4   | 1133.2   | 8126.1                | 392.4           | 6772.4             | 3.4                 | 4.1           | 477.7                             | 103.6                                | 2410.0   | 0.0                 | 0.0                 | ZZZ      | MULIT         | IT                              | IT                      |
| xxx     | kk292 | 37.3    | 4          | 9024.1      | 32235.9   | 2442.0   | 23981.4               | 2054.4          | 20076.2            | 8.3                 | 12.4          | 6897.0                            | 0.0                                  | 6582.1   | 4482.6              | 5.7                 | ZZZ      | MULIT         | IT                              | IT                      |
| xxx     | kk212 | 539.3   | 7          | 390475.0    | 531493.0  | 37243.0  | 269003.0              | 2549.0          | 85701.0            | 0.0                 | 0.0           | 0.0                               | 0.0                                  | 353232.0 | 0.0                 | 0.0                 | ZZZ      | MULIT         | IT                              | IT                      |
| xxx     | kk230 | 237.2   | 6          | 38712.6     | 67133.1   | 13927.6  | 28420.5               | 1211.9          | 22238.3            | 0.0                 | 0.0           | 0.0                               | 0.0                                  | 24785.0  | 0.0                 | 0.0                 | ZZZ      | MULIT         | IT                              | IT                      |
| xxx     | kk292 | 4.7     | 1          | 82.6        | 260.6     | 189.3    | 178.0                 | 2.4             | 149.0              | 0.0                 | 0.0           | 0.6                               | 0.1                                  | -106.7   | 0.0                 | 0.0                 | ZZZ      | MULIT         | IT                              | IT                      |
| xxx     | kk291 | 3.5     | 1          | 105.7       | 571.3     | 105.7    | 465.6                 | 0.0             | 421.5              | 0.0                 | 0.0           | 1.8                               | 0.2                                  | -0.1     | 0.0                 | 0.0                 | ZZZ      | MULIT         | IT                              | IT                      |
| xxx     | kk291 | 82.4    | 5          | 3029.8      | 27788.8   | 3552.9   | 24889.4               | 59.0            | 24150.2            | 5.9                 | 28.4          | 2524.1                            | 28.0                                 | -523.1   | 0.0                 | 49.3                | ZZZ      | MULIT         | IT                              | IT                      |
| xxx     | kk220 | 7.2     | 2          | 1374.7      | 3981.1    | 429.3    | 2606.4                | 1770.2          | 621.2              | 0.5                 | 0.1           | 2.3                               | 0.8                                  | 945.4    | 0.0                 | 0.0                 | ZZZ      | MULIT         | IT                              | IT                      |
| xxx     | kk292 | 369.8   | 7          | 32095.0     | 59253.0   | 19824.0  | 30490.0               | 312.0           | 24608.0            | 0.0                 | 0.0           | 0.0                               | 0.0                                  | 12271.0  | 7.0                 | 4.5                 | ZZZ      | MULIT         | IT                              | IT                      |

| Frame-SBS | COE-TEC | Asia-Groups |
|-----------|---------|-------------|

#### See Tables **DB exemple** and **Descriptive**

# Overview of the method by step

- MNE vs. comparable non-MNE method is composed by three phases:
  - 1. The **identification** of the either BEPS generating (outward IFFs) or BEPS collecting (inward IFFs) nature of the country (OECD's dashboard approach of BEPS indicators)
  - 2. The **selection** of tax avoiding (TA) units among MNEs
    - Italian MNEs are evaluated in order to define if they are suspected of tax avoiding behaviour based on the comparison between MNEs and a control group consisting of (comparable) non-MNEs
  - 3. The **correction** of profits for TA MNEs
    - The EBIT-to-turnover ratio of TA units is adjusted exploting the selection model in order to compare the economic results of TA MNEs vs. the one of non-TA MNEs

### Selection - Overview

• The phase of selection is composed of three steps:

#### • Control group definition

For each MNE unit, a control group of domestic firms is defined using propensity score matching

#### Between comparison (MNEs vs. non-MNEs)

For each pair MNE unit-control group, a comparison in terms of profit share is used to define a proxy variable, which stresses possible abnormal behaviours by MNEs

#### Within comparison (among MNEs)

ROC analysis is used to define the final clustering between tax avoiding (TA) and non tax-avoiding (NTA) units starting from the proxy variable

# Selection - Definition of control groups

#### Definition of confounding variables for PS matching analysis

- **v1** = Turnover / Workers
- v2 = Number of workers
- **v3** = Costs for goods / Total intermediate costs
- v4 = Value of exports / Turnover
- **v5** = Value of imports / Total costs
- v6 = Salaries / (Salaries + Total intermediate costs)
- **v7** = Costs for services / Total intermediate costs
- **vv** = EBIT / Turnover

#### 6 Federico Sallusti – MNE vs comparable non-MNE profit shifting

#### See Table **DB PS indicators**

# Selection - Definition of control groups

#### **Propensity score matching analysis**

PS Model to define matching probabilities

treat(treated='1') = v1 v2 v3 v4 v5 v6 v7 NUTS2 (Logit model to define matching probabilities)

Matching method and number of similar

match method = greedy (k = 5)

• Binding characteristics

Exact (NACE3 size class NUTS2)

#### See Table **Outmatch**

#### Definition of the proxy of suspect

- Prospensity score matching allows to define a control group of domestic firms for each MNE unit
- For each pair MNE unit-control group, a **proxy of suspect** of TA is given by the following condition:
  - **Proxy** = 1

if ebit-to-turnover ratio for the MNE unit is lower than the average of the control group

• **Proxy** = **0** 

if ebit-to-turnover ratio for the MNE unit is greater or equal to the average of the control group



#### Steps in within comparison

• Definition of variables

From structural and performance characteristics of MNEs it selects the variables of interests in capturing the behavior of MNEs

• Factor Analysis

From x0-x8 variables it selects two factors

• Definition of composite indicator

From factors it defines the composite to be used in the logit model of the ROC analysis

• ROC analysis

It allows to define the final classification between Tax Avoiding (TA) and non-Tax Avoiding (nonTA) MNEs

Definition of variables (inverse relationships with proxy, the higher the values the lower the probability of TA)

- **x0** = EBIT / Turnover
- **x1** = Value added / Turnover
- x2 = Costs on R&D / Total intermediate costs
- **x3** = 1 ( Costs on royalties / Turnover )
- x4 = 1 Value of imports / Total intermediate costs
- **x5** = 1 Tax framework (by Country, differential)
- **x6** = Salaries / Turnover
- **x7** = 1 Cost for services / Turnover
- **x8** = Value of exports / Turnover

#### See Table DB ROC indicators

# Factor analysis and the definition of the composite indicator

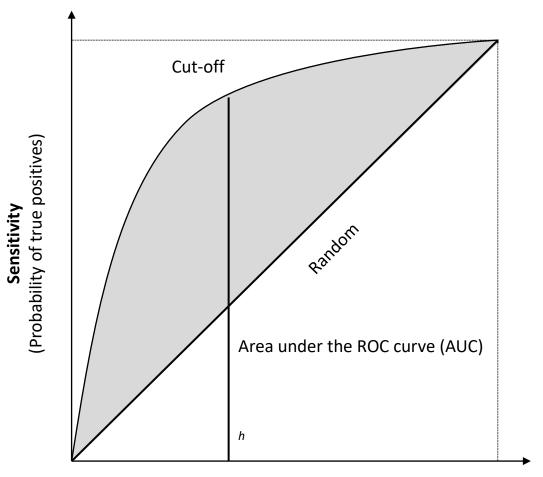
- **x0 x8** variables are firstly standardized in order to avoid scale effects
- From factor analysis, the first two auto-rotated factors are retained and the composite is defined as follows

$$I_{i} = \omega_{1}\left(\sum_{j} \gamma_{j,1} x_{j,i}\right) + \omega_{2}\left(\sum_{j} \gamma_{j,2} x_{j,i}\right)$$

where,  $\gamma_{j,1}$  and  $\gamma_{j,2}$  are the loadings of the *j*-th variable in factors 1 and 2,  $x_{j,i}$  is the value of the *j*-th variable for the *i*-th observation, and  $\omega_1$  and  $\omega_2$  are weights in term of explained variance

|                       | Factor1 | Factor2 |
|-----------------------|---------|---------|
| x0                    | 0.043   | 0.518   |
| <b>x1</b>             | 0.057   | 0.519   |
| x2                    | -0.086  | 0.025   |
| x3                    | 0.452   | -0.063  |
| x4                    | -0.043  | 0.178   |
| x5                    | -0.011  | 0.050   |
| x6                    | 0.195   | -0.002  |
| x7                    | 0.465   | -0.049  |
| x8                    | -0.063  | 0.118   |
| Explained<br>variance | 2.098   | 1.688   |

| ROC analysis                                       |                      |              |                |                          |  |  |  |
|----------------------------------------------------|----------------------|--------------|----------------|--------------------------|--|--|--|
|                                                    |                      | Observations |                | 1124                     |  |  |  |
| <ul> <li>Using the proxy of suspect and</li> </ul> |                      |              |                |                          |  |  |  |
| the composite indicator, the                       | Proxy                | 0            | Frequency      | 237                      |  |  |  |
| following logit model can be                       | FTOXy                | 1            | Frequency      | 887                      |  |  |  |
| run:                                               |                      | Criteria     |                |                          |  |  |  |
| run.                                               |                      |              | Intercept only | Intercept and covariates |  |  |  |
|                                                    | AIC                  |              | 1159.9         | 895.9                    |  |  |  |
| $Prob \ (Proxy = 1 C)_i = \Lambda(\alpha C)_i$     | SC                   |              | 1164.9         | 905.9                    |  |  |  |
|                                                    | -2 Log               | L            | 1157.9         | 891.9                    |  |  |  |
|                                                    | Results              |              |                |                          |  |  |  |
|                                                    | Parameters           | Estimate     | Standard error | P-value                  |  |  |  |
|                                                    | Composite            | -2.4225      | 0.2075         | <.0001                   |  |  |  |
|                                                    |                      | Good         | ness of fit    |                          |  |  |  |
|                                                    | Percentuale concordi | 82.4         | D di Somers    | 0.648                    |  |  |  |
|                                                    | Percentuale discordi | 17.6         | Gamma          | 0.648                    |  |  |  |

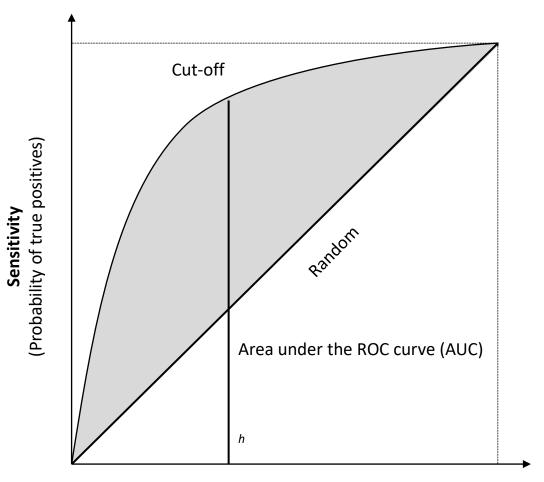

- The ROC analysis can be traced back to classification problems in which classifiers can give the four possible outcomes shown in the **confusion matrix.** The efficiency of the classifier can be measured using two metrics:
- **Sensitivity** measures the ability of the classifier to detect true positives, i.e. TP/(TP + FN);
- **Specificity** measures the ability of the classifier to detect true negatives, i.e. TN/(TN + FP), where it is usually considered in its reciprocal expression (1-Specificity), which measures the correct detection of false positives



- Considering a logit model having:
- a binomial dependent reflecting a given status
- a classifier represented by a single (even composite) indicator

the distribution of probabilities resulting from the logit estimates can be displayed in the space of Sensitivity and 1-Specificity by the **ROC curve** 

 The line of the ROC curve represents the probabilities assigned by the model to each observation in the space of the trade-off between the probability of detecting true or false positives across all possible cutoff points along the values of the classifier




**1-Specificity** (Probability of false positives)

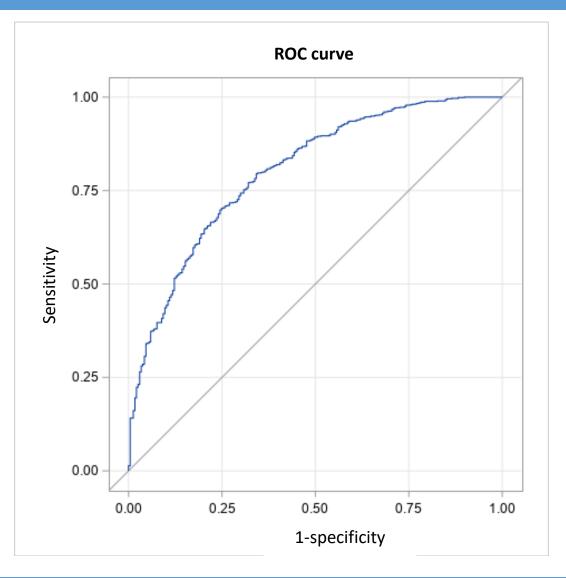
 In order to single out, along the ROC curve, the observation that most efficiently discriminates between positives and negatives (Cut), the following equation should be maximized:

Cut = h \* sensitivity - (1 - h) \* (1 - specificity)

where h and (1-h) represent the relative weights to manage the trade-off between true and false positives.



**1-Specificity** (Probability of false positives)


#### **ROC** analysis

• The logit model generates the following ROC curve (with AUC=0.8119)

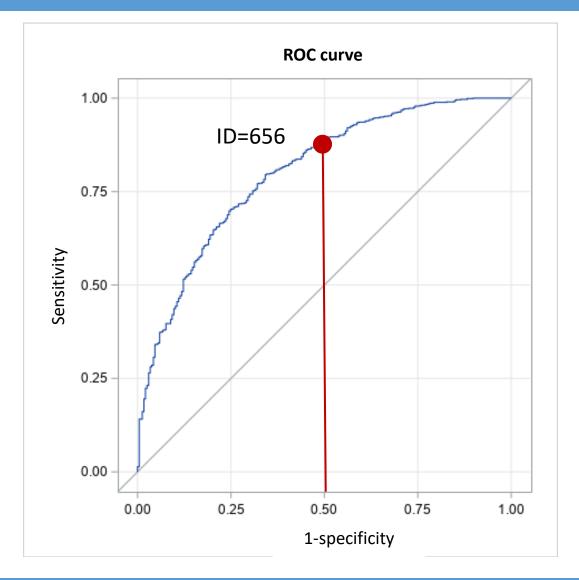
Cut = h \* sensitivity - (1 - h) \* (1 - specificity)

with h = 0.5 (neutral selection), the ID of the threshold observation can be obtained:

| Threshold | ID  | Value of the composite |
|-----------|-----|------------------------|
| 1         | 656 | 0.058488               |



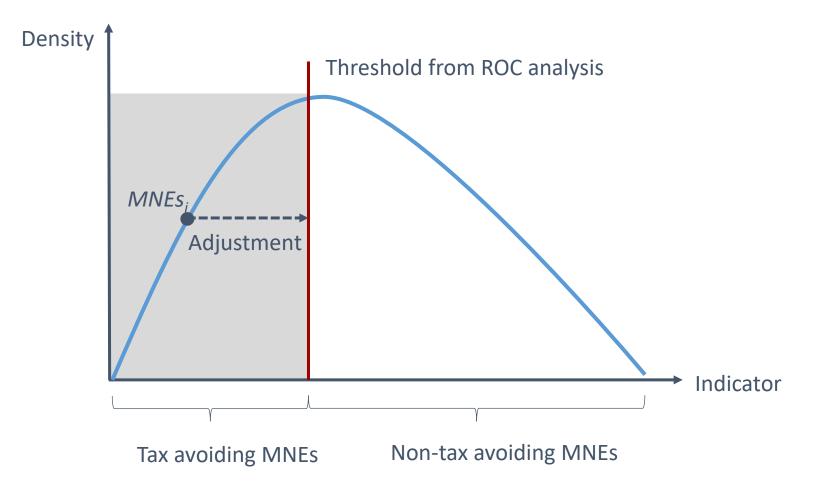
#### See Tables AUCs and Coeffs and thresholds


#### **Classification of MNEs**

• The value of the composite of threshold MNE unit  $\bar{S}$  can be used to classify other observation.

In particular:

- If  $I_i \ge \overline{S}$  then the MNE unit is non-TA
- If  $I_i < \overline{S}$  then the MNE unit is TA


| Sta | tus    | Frequency Percentage |      | Cumulative<br>frequency | Cumulative percentage |  |  |
|-----|--------|----------------------|------|-------------------------|-----------------------|--|--|
| 0   | Non-TA | 441                  | 39.2 | 441                     | 39.2                  |  |  |
| 1   | TA     | 683                  | 60.8 | 1124                    | 100.0                 |  |  |



#### See Table Fitting

### Correction – conceptual framework

• The correction for BEPS exploits the information provided by the ROC analysis in the selection phase



### Correction – conceptual framework

- The correction of profit shifting exploits the information provided by the ROC analysis in the selection phase
- For each TA unit, the following condition applies:

$$\bar{S} > \alpha F_{1,i} + \beta F_{2,i}$$

where factors are:

$$F_{1,i} = \sum_{j} \gamma_{j,1} x_{j,i}$$
 and  $F_{2,i} = \sum_{j} \gamma_{j,2} x_{j,i}$ 

• The procedure assigns to the indicator  $x_1$ , which is the ebit-to-turnover ratio, the value such that, for each TA MNEs, the following condition is obtained:

$$\bar{S} = \alpha F_{1,i} + \beta F_{2,i}$$

#### Correction – conceptual framework

This allows to define the adjustment condition as:

$$\tilde{x}_{j,i} = \frac{\bar{s} - (\alpha \sum_{-j} \gamma_{-j,1} x_{-j,1} + \beta \sum_{-j} \gamma_{-j,2} x_{-j,2})}{\alpha \gamma_{j,1} + \beta \gamma_{j,2}}$$

where:

- $\bar{S}$  is the threshold value defined by the ROC analysis on the composite indicator
- $(\alpha \sum_{-j} \gamma_{-j,1} x_{-j,1} + \beta \sum_{-j} \gamma_{-j,2} x_{-j,2})$  represents the effect of the other variables on the value of the composite indicator
- $\alpha \gamma_{i,1} + \beta \gamma_{i,2}$  represents the weight of the ebit-to-turnover ratio on the value of the composite indicator
- $\tilde{x}_{i,i}$  is the adjusted value of the ebit-to-turnover ratio in order to bring the TA MNE on the threshold
- The amount of the adjustment is obtained as:  $(\tilde{x}_{j,i} x_{j,i}) * Turnover_i$

# Measuring (outward and inward) IFFs

- The amount of the correction is obtained by comparing the EBIT-to-turnover ratio of the two groups of MNEs defined by the model
- The amount of correction actually represents the measure of IFFs
- In particular:

#### **BEPS generating country**

*OutwardIFFs*<sub>i</sub> =  $(\tilde{x}_{h,i} - x_{j,i}) * Turnover_i$ 

where  $\tilde{x}_{h,i} > x_{j,i}$ 

**BEPS collecting country** 

InwardIFFs<sub>i</sub> =  $-(\tilde{x}_{h,i} - x_{j,i}) * Turnover_i$ 

where  $\tilde{x}_{h,i} < x_{j,i}$ 

#### See Table Results, Countries and Descriptives

# Thank you.