Profit Shifting of Multinational Corporations Worldwide

Javier Garcia-Bernardo, Petr Janský

Institute of Economic Studies, Faculty of Social Sciences, Charles University, Prague, Czechia

Interregional training workshop on the statistical measurement of tax and commercial illicit financial flows (IFFs), 6 December, 2021

Introduction •000 Data 00 Methodology 00000 Results: OECD data 000 Results from other papers O Conclusion 000000

Introduction	Data	Methodology	Results: OECD data	Results from other papers	Conclusio
0000	00	00000	000	0	00000

The effects of profit shifting of multinational corporations (MNCs)

Illicit financial flows and SDG target 16.4

The effects of profit shifting of multinational corporations (MNCs)

- Illicit financial flows and SDG target 16.4
- Uneven level playing field
- Lower government revenues
- Globalisation perceived as inequitable

Introduction	Data	Methodology	Results: OECD data	Results from other papers	Conclusion
0000	00	00000	000	0	000000

Overview

- Data: Country-by-country reporting (CBCR) by MNCs for many countries
- Methodology: A logarithmic function to model the extremely non-linear relationship between profits and tax rates

Introduction	Data	Methodology	Results: OECD data	Results from other papers	Conclusion
0000	00	00000	000	0	000000

Overview

- Data: Country-by-country reporting (CBCR) by MNCs for many countries
- Methodology: A logarithmic function to model the extremely non-linear relationship between profits and tax rates
- 1 Scale
- 2 Tax Havens
- 3 Headquarters
- 4 Low-income countries

Contributions to the existing literature (and policy debates)

- Methodology: Hines and Rice (1994), Dowd et al. (2017)
- Data: Clausing (2020), Garcia-Bernardo, Janský, and Tørsløv (2021), Fuest, Hugger, et al. (2021), Garcia-Bernardo, Janský, and Zucman (2021)
- Scale: Crivelli et al. (2016), Álvarez-Martínez et al. (2021), Tørsløv et al. (2020), Bilicka (2019), Dharmapala and Riedel (2013)
- 2 Tax havens: Zucman (2015), Guvenen et al. (2021)
- B Headquarters: Dischinger et al. (2014), Wright and Zucman (2018)
- Low-income countries: Fuest, Hebous, et al. (2011), Janský and Palanský (2019), Johannesen et al. (2020)

The country-by-country reporting data

- Aggregated large MNCs' profits and taxes in around 190 countries
- Profit-making affiliates for effective tax rates (ETRs) and both profit- and loss-making affiliates for real operations of MNCs
- The 2017 US CBCR data
- The 2016 OECD CBCR data with data imputations to further improve coverage
- The data are a major step forward, albeit imperfect

Introduction	Data	Meth
0000	0•	000

nodology R DOO C

Results: OECD data 000

Results from other papers O Conclusion 000000

Country availability

Reporting country

Introduction	Data	Methodology	Results: OECD data	Results from other papers	Conclusion
0000	00	●0000	000	0	000000

Methodology

- Tax semi-elasticity model: linear, quadratic and logarithmic
- (Also: reallocation of the shifted profit and misalignment model)

Introduction	Data	Methodology	Results: OECD data	Results from other papers	Conclusion
0000	00	00000	000	0	000000

Tax semi-elasticity

The most common model (Hines and Rice, 1994)

Profits booked

Tax rate

Introduction	Data	Methodology	Results: OECD data	Results from other papers	Conclusion
0000	00	0000	000	0	000000

Tax semi-elasticity

The most common model (Hines and Rice, 1994)

Tax rate

Profits booked

Tax rate squared

Introduction	Data	Methodology	Results: OECD data	Results from other papers	Conclusion
0000	00	00000	000	0	000000

Tax semi-elasticity

The most common model (Hines and Rice, 1994)

Empirical observation: The model still does not fit the data very well

Introduction 0000 Methodology ○○○●○

Data

Results: OECD data 000 Results from other papers O Conclusion 000000

Our model: Logarithmic semi-elasticity

 $\propto \beta_3(\tau_i) + \beta_4 \log(t + \tau_i)$ $\log(\pi_i)$ Profits booked Tax rate Logarithmic tax rate

Introduction	Data	Methodology	Results: OECD data	Results from other papers
0000	00	00000	000	0

Results for ETR 0.1% (Jersey)

12

Conclusion

The scale of estimated revenue losses (billion USD)

Study	Profit shifting	Revenue loss	Data (type)	Individua coun- tries	l Countries (num- ber)	Year (data)
Cobham and Janský (2018)	-	90	Revenue	Yes	102	2013
IMF's Crivelli et al. (2016)	-	123	Revenue	No	173	2013
Janský and Palanský (2019)	420	125	FDI	Yes	79	2016
IMF (2014)	-	180	Revenue	Yes	46	2012
UNCTAD's Bolwijn et al. (2018)	330-450	200	FDI	No	72	2012
Tørsløv et al. (2020)	616-646	230	FDI	Yes	48	2015
OECD's Johansson et al. (2017)	-	100-240	Orbis	No	46	2010
Clausing (2016)	1076	279	FDI	Yes	25	2012
This paper	965-994	186-307	CBCR	Yes	192	2016

Profits shifted in and out of countries

Tax revenue loss as a percentage of total revenue

Results from other papers

- Double counting in the CBCR data
- Some MNCs publish their CBCR data
- Banks' CBCR
- Extractive industry's CBCR

Conclusion •00000

Summary of findings

- Bigger than previously estimated
- Low effective tax rates
- Low-income countries more hardly hit
- US multinational corporations are special

Implications for a global corporate tax reform

- Postponements costly for low-income countries in particular
- Unanimous support unlikely if only because of the major players
- The importance of tax havens with low effective tax rates
- The importance of the global minimum tax rate

Implications for measuring illicit financial flows

- Estimation of profit shifting is possible
- The more detailed data, the better
- The CBCR data is great, combining it with other data even better

Methodology 00000 Results: OECD data 000 Results from other papers O Conclusion 000000

Implications for future research

Company-level data from governments or MNCs

 Introduction
 Data
 Methodology
 Res

 0000
 00
 00000
 00

Results: OECD data

Results from other papers O Conclusion

Implications for future research

- Company-level data from governments or MNCs
- New years of data

Results from other papers O

Results: OECD data 000

Methodology

Data

Introductio 0000

Petr Janský

Conclusion 000000

Charles University

petrjansky.cz 🗹

@petr_jansky ♥

petr.jansky@fsv.cuni.cz 🔽

CORPITAX

Profit Shifting of Multinational Corporations Worldwide

Javier Garcia-Bernardo, Petr Janský

Institute of Economic Studies, Faculty of Social Sciences, Charles University, Prague, Czechia

Interregional training workshop on the statistical measurement of tax and commercial illicit financial flows (IFFs), 6 December, 2021

References I

- Álvarez-Martínez, M. T., Barrios, S., d'Andria, D., Gesualdo, M., Nicodème, G., and Pycroft, J. (2021). "How Large Is the Corporate Tax Base Erosion and Profit Shifting? A General Equilibrium Approach". *Economic Systems Research*.
- Bilicka, K. A. (Aug. 2019). "Comparing UK Tax Returns of Foreign Multinationals to Matched Domestic Firms". American Economic Review, 109(8).
- Bolwijn, R., Casella, B., and Rigo, D. (2018). "Establishing the Baseline: Estimating the Fiscal Contribution of Multinational Enterprises". *Transnational Corporations*, 25(3).
- Clausing, K. (2016). "The Effect of Profit Shifting on the Corporate Tax Base in the United States and Beyond". *National Tax Journal*, 69(4).
- (Nov. 2020). "Five Lessons on Profit Shifting from the US Country by Country Data". *Tax Notes Internationa and Tax Notes Federal*.

References II

- Cobham, A. and Janský, P. (2018). "Global Distribution of Revenue Loss from Corporate Tax Avoidance: Re-Estimation and Country Results". *Journal of International Development*, 30(2).
- Crivelli, E., de Mooij, R., and Keen, M. (2016). "Base Erosion, Profit Shifting and Developing Countries". *FinanzArchiv: Public Finance Analysis*, 72(3).
- Dharmapala, D. and Riedel, N. (2013). "Earnings Shocks and Tax-Motivated Income-Shifting: Evidence from European Multinationals". *Journal of Public Economics*, 97.
- Dischinger, M., Knoll, B., and Riedel, N. (Apr. 2014). "The Role of Headquarters in Multinational Profit Shifting Strategies". *International Tax and Public Finance*, 21(2).
- Dowd, T., Landefeld, P., and Moore, A. (Apr. 2017). "Profit Shifting of U.S. Multinationals". *Journal of Public Economics*, 148.

References III

- Fuest, C., Hebous, S., and Riedel, N. (2011). "International Debt Shifting and Multinational Firms in Developing Economies". *Economics Letters*, 113(2).
- Fuest, C., Hugger, F., and Neumeier, F. (2021). "Corporate Profit Shifting and the Role of Tax Havens: Evidence from German CbC Reporting Data". CESifo Working Paper.
- Garcia-Bernardo, J., Janský, P., and Tørsløv, T. (2021). "Multinational Corporations and Tax Havens: Evidence from Country-by-Country Reporting". *International Tax and Public Finance*.
- Garcia-Bernardo, J., Janský, P., and Zucman, G. (2021). "Did the Tax Cuts and Jobs Act Reduce Profit Shifting by US Multinational Companies?"

References IV

- Guvenen, F., Mataloni Raymond J, J., Rassier, D. G., and Ruhl, K. J. (2021). Offshore Profit Shifting and Aggregate Measurement: Balance of Payments, Foreign Investment, Productivity, and the Labor Share. Working Paper 23324. National Bureau of Economic Research.
- Hines, J. R. and Rice, E. M. (1994). "Fiscal Paradise: Foreign Tax Havens and American Business". *The Quarterly Journal of Economics*, 109(1).
- Janský, P. and Palanský, M. (2019). "Estimating the Scale of Profit Shifting and Tax Revenue Losses Related to Foreign Direct Investment". International Tax and Public Finance, 26(5).
- Johannesen, N., Tørsløv, T., and Wier, L. (Oct. 2020). "Are Less Developed Countries More Exposed to Multinational Tax Avoidance? Method and Evidence from Micro-Data". *The World Bank Economic Review*, 34(3).

References V

- Johansson, A., Skeie, O. B., Sorbe, S., and Menon, C. (2017). "Tax Planning by Multinational Firms: Firm-level Evidence from a Cross-Country Database". *OECD Economics Department Working Papers*, 2017(1355).
- Tørsløv, T., Wier, L., and Zucman, G. (2020). "The Missing Profits of Nations". *National Bureau of Economic Research Working Paper*, 2018, revised April 2020(24071).
- Wright, T. and Zucman, G. (2018). "The Exorbitant Tax Privilege". National Bureau of Economic Research Working Paper, 24983.
- Zucman, G. (2015). The Hidden Wealth of Nations: The Scourge of Tax Havens. Chicago, IL: University of Chicago Press.

1 A variety of methodological approaches, semi-elasticity and misalignment

- 1 A variety of methodological approaches, semi-elasticity and misalignment
- 2 The robustness of the 25 per cent ETR threshold

- 1 A variety of methodological approaches, semi-elasticity and misalignment
- 2 The robustness of the 25 per cent ETR threshold
- 3 A comparison of our results to those of Tørsløv et al. (2020)

- 1 A variety of methodological approaches, semi-elasticity and misalignment
- 2 The robustness of the 25 per cent ETR threshold
- 3 A comparison of our results to those of Tørsløv et al. (2020)
- 4 A comparison the tax revenue loss with a variety of benchmarks

- 1 A variety of methodological approaches, semi-elasticity and misalignment
- 2 The robustness of the 25 per cent ETR threshold
- 3 A comparison of our results to those of Tørsløv et al. (2020)
- 4 A comparison the tax revenue loss with a variety of benchmarks
- 5 Limiting the sample to those countries that report information on at least eight offshore centres

- 1 A variety of methodological approaches, semi-elasticity and misalignment
- 2 The robustness of the 25 per cent ETR threshold
- 3 A comparison of our results to those of Tørsløv et al. (2020)
- 4 A comparison the tax revenue loss with a variety of benchmarks
- 5 Limiting the sample to those countries that report information on at least eight offshore centres
- 6 The sensitivity of our results to the offset in the logarithmic model

- 1 A variety of methodological approaches, semi-elasticity and misalignment
- 2 The robustness of the 25 per cent ETR threshold
- 3 A comparison of our results to those of Tørsløv et al. (2020)
- 4 A comparison the tax revenue loss with a variety of benchmarks
- 5 Limiting the sample to those countries that report information on at least eight offshore centres
- 6 The sensitivity of our results to the offset in the logarithmic model
- 7 A comparison of the logarithmic specification with other specifications that can accommodate extreme non-linearities, including $1/(\tau + ETR)^1$, $1/(\tau + ETR)^2$, $1/(\tau + ETR)^3$ and $coth(\tau + ETR)$)

- 1 A variety of methodological approaches, semi-elasticity and misalignment
- 2 The robustness of the 25 per cent ETR threshold
- 3 A comparison of our results to those of Tørsløv et al. (2020)
- 4 A comparison the tax revenue loss with a variety of benchmarks
- 5 Limiting the sample to those countries that report information on at least eight offshore centres
- 6 The sensitivity of our results to the offset in the logarithmic model
- 7 A comparison of the logarithmic specification with other specifications that can accommodate extreme non-linearities, including $1/(\tau + ETR)^1$, $1/(\tau + ETR)^2$, $1/(\tau + ETR)^3$ and $coth(\tau + ETR)$)

8 A different redistribution formula

- 8 A different redistribution formula
- 9 We estimate missing data using 1,000 bootstrapped data samples (using a median, showing confidence intervals)

- 8 A different redistribution formula
- 9 We estimate missing data using 1,000 bootstrapped data samples (using a median, showing confidence intervals)
- 10 A comparison of the location of employees and revenue according to our missing data model with the information in the original data as well as GDP

- 8 A different redistribution formula
- 9 We estimate missing data using 1,000 bootstrapped data samples (using a median, showing confidence intervals)
- 10 A comparison of the location of employees and revenue according to our missing data model with the information in the original data as well as GDP
- 11 A comparison of our missing data imputation method with other models

- 8 A different redistribution formula
- 9 We estimate missing data using 1,000 bootstrapped data samples (using a median, showing confidence intervals)
- 10 A comparison of the location of employees and revenue according to our missing data model with the information in the original data as well as GDP
- 11 A comparison of our missing data imputation method with other models
- 12 A robustness test in which the data of China is not adjusted

Appendix 000000000

Figure: Distribution of the scale of profit shifted estimated by the misalignment model at the country level. The largest origins (top two rows, in blue) and

Appendix 0000000000

Methodology specifications

Linear:

$$\log(\pi_i) = \beta_0 + \beta_1 \log(K_i) + \beta_2 \log(L_i) + \beta_3(\tau_i) + \beta_\chi \chi + \epsilon, \quad (1)$$

Linear:

$$\log(\pi_i) = \beta_0 + \beta_1 \log(K_i) + \beta_2 \log(L_i) + \beta_3(\tau_i) + \beta_\chi \chi + \epsilon, \quad (1)$$

Quadratic:

 $\log(\pi_i) = \beta_0 + \beta_1 \log(K_i) + \beta_2 \log(L_i) + \beta_3(\tau_i) + \beta_4(\tau_i)^2 + \beta_\chi \chi + \epsilon, \quad (2)$

Linear:

$$\log(\pi_i) = \beta_0 + \beta_1 \log(K_i) + \beta_2 \log(L_i) + \beta_3(\tau_i) + \beta_\chi \chi + \epsilon, \quad (1)$$

Quadratic:

 $\log(\pi_i) = \beta_0 + \beta_1 \log(K_i) + \beta_2 \log(L_i) + \beta_3(\tau_i) + \beta_4(\tau_i)^2 + \beta_\chi \chi + \epsilon, \quad (2)$

Logarithmic:

 $\log(\pi_i) = \beta_0 + \beta_1 \log(K_i) + \beta_2 \log(L_i) + \beta_3(\tau_i) + \beta_4 \log(t + \tau_i) + \beta_\chi \chi + \epsilon.$ (3)

Linear:

$$\log(\pi_i) = \beta_0 + \beta_1 \log(K_i) + \beta_2 \log(L_i) + \beta_3(\tau_i) + \beta_\chi \chi + \epsilon, \quad (1)$$

Quadratic:

 $\log(\pi_i) = \beta_0 + \beta_1 \log(K_i) + \beta_2 \log(L_i) + \beta_3(\tau_i) + \beta_4(\tau_i)^2 + \beta_\chi \chi + \epsilon, \quad (2)$

Logarithmic:

 $\log(\pi_i) = \beta_0 + \beta_1 \log(K_i) + \beta_2 \log(L_i) + \beta_3(\tau_i) + \beta_4 \log(t + \tau_i) + \beta_\chi \chi + \epsilon.$ (3)

Profit misalignment model and the redistribution formula, R_i:

$$R_{i} = 1/4 \frac{L_{i}}{\sum_{i} L_{i}} + 1/4 \frac{W_{i}}{\sum_{i} W_{i}} + 1/2 \frac{Rev_{i}}{\sum_{i} Rev_{i}},$$
(4)

Appendix 0000000000

	Log	Quad	Log+Quad	Linear	DLM-Quad	DLM-Linear
Intercept	-6.8326***	-0.8160	-7.3478***	-0.8683		2.482
	(2.0061)	(2.1996)	(2.1783)	(2.4403)		(0.136)
ETR	5.5093***	-17.2618***	8.5732	-4.0226***	-3.748	-1.076
	(1.4594)	(3.0732)	(5.1545)	(1.0793)		(0.108)
log(0.0014 + ETR)	-1.5176***	. ,	-1.6464***	. ,		. ,
,	(0.1920)		(0.2834)			
ETR ²		28.5306***	-4.8589		7.184	
		(6.2822)	(7.8373)			
log(Population)	0.3694***	0.2885**	0.3671***	0.1807		
	(0.1051)	(0.1235)	(0.1056)	(0.1344)		
log(GDPpc)	0.4721***	0.4953**	0.4698***	0.4917**		
	(0.1628)	(0.1926)	(0.1634)	(0.2137)		
log(Tangible assets)	0.4874***	0.6354***	0.4841***	0.7436***		
	(0.0748)	(0.0832)	(0.0753)	(0.0885)		
log(Wages)	0.1617*	0.0291	0.1648*	-0.0670		
	(0.0929)	(0.1066)	(0.0934)	(0.1159)		
N	91	91	91	91	96.959	96.959
R2	0.90	0.86	0.90	0.82	0.465	0.465
BIC	222.58	253.21	226.67	268.68		

Appendix 00000000000

	Logarithmic	Quadratic	Log*FE + Quad	Log + Quad*FE	Linear
ETR	0.8875	-8.5032***	1.9793	0.0754	-3.6634***
	(0.7719)	(1.6584)	(2.5847)	(2.6843)	(1.2751)
ETR ²		11.9405***	-2.1320	-1.6397	
		(4.2511)	(4.8163)	(5.3813)	
log(0.0007 + ETR)	-0.8665***		-0.8957***	-0.3379***	
	(0.1642)		(0.1770)	(0.0838)	
Australia*tax	0.4306**	1.0065	0.4330**	-0.7650	-0.3838
	(0.1998)	(7.8104)	(0.2000)	(7.7249)	(2.6301)
Belgium*tax	0.2948	-4.5105	0.3008*	-4.2598	-1.7723
	(0.1790)	(4.5443)	(0.1796)	(4.4877)	(1.9625)
Bermuda*tax	0.0943	-3.5274	0.0956	-3.8274	-0.9763
	(0.2169)	(4.2640)	(0.2171)	(4.2111)	(1.9457)
China*tax	0.8757***	13.2458**	0.8777***	12.5428**	5.5597**
	(0.1945)	(5.4004)	(0.1947)	(5.3355)	(2.1749)
Denmark*tax	0.3397**	-3.7208	0.3466**	-2.7414	-1.8929
	(0.1615)	(3.8300)	(0.1623)	(3.7897)	(1.6508)
India*tax	0.7779***	8.0289	0.7821***	8.1251*	4.2697**
	(0.1947)	(4.9194)	(0.1950)	(4.8578)	(2.1596)
Italy*tax	0.6494***	6.1330	0.6505***	4.8425	1.4175
	(0.1857)	(6.4195)	(0.1858)	(6.3470)	(2.2274)
Luxembourg*tax	0.2824	5.0685	0.2859	4.3634	-0.0267
	(0.1837)	(5.2002)	(0.1840)	(5.1380)	(2.0815)
Mexico*tax	0.9279***	9.8344**	0.9364***	10.2409**	5.5226***
	(0.1825)	(4.1190)	(0.1837)	(4.0686)	(1.8670)
South Africa*tax	0.9362***	9.7287**	0.9404***	10.1278**	5.4227***
	(0.1829)	(4.1038)	(0.1840)	(4.0486)	(1.8683)
log(Population)	0.0990**	0.0641	0.0978**	0.0789**	0.0334
	(0.0387)	(0.0397)	(0.0388)	(0.0394)	(0.0390)
log(GDPpc)	0.1027*	0.1262**	0.1024*	0.1206**	0.1238**
	(0.0573)	(0.0597)	(0.0574)	(0.0590)	(0.0599)
log(Tangible assets)	0.3251***	0.3136***	0.3254***	0.3167***	0.3183***
	(0.0240)	(0.0243)	(0.0240)	(0.0240)	(0.0246)
log(Wages)	0.2440***	0.2198***	0.2442***	0.2352***	0.2172***
	(0.0334)	(0.0344)	(0.0334)	(0.0341)	(0.0344)
FE interaction	log	quad	log	quad	lin
N	622	622	622	622	622
R2	0.73	0.71	0.73	0.72	0.71
BIC	2220.79	2270.04	2227.02	2259.72	2268.14

Top destinations of profit shifting

	Misalignment			Logarithmic		
Country	P (all groups)	PS (B)	PS (%booked)	P (groups¿0)	PS (B)	PS (%booked)
Cayman Islands	148,968	147,879	99.27	136,653	128,895	94.32
Netherlands	212,366	140,896	66.35	166,854	75,624	45.32
China	1,000,565	94,385	9.43	1,746,828	50,073	2.87
Hong Kong	160,805	90,199	56.09	185,760	94,270	50.75
Bermuda	63,542	62,992	99.13	113,955	101,749	89.29
British Virgin Islands	60,895	60,895	100.00	81,794	78,354	95.79
Switzerland	129,518	51,611	39.85	127,879	61,244	47.89
Puerto Rico	44,639	42,565	95.35	72,012	63,336	87.95
Ireland	65,106	28,062	43.10	76,753	18,496	24.10
Singapore	111,477	22,850	20.50	129,768	63,969	49.30
Luxembourg	28,228	17,536	62.12	146,916	119,057	81.04

Estimates of profits shifted and tax revenue loss

	Profits	TRL	TRL	TRL
	shifted	(total ETR)	(foreign ETR)	(CIT)
Misalignment	\$ 994 bn	\$ 205 bn	\$ 214 bn	\$ 307 bn
Logarithmic	\$ 965 bn	\$ 186 bn	\$ 200 bn	\$ 300 bn

Profits shifted as a percentage of GDP

