

Carbon Tax in the Shipping Sector: Assessing Economic and Environmental Impacts

Authors: Paula Pereda, Andrea Lucchesi, Thais Diniz Oliveira, Rayan Wolf, and Henrique Lazarini

UNCTAD Ad Hoc Expert Meeting

Aug 24, 2023

Under review, please do not cite without permission

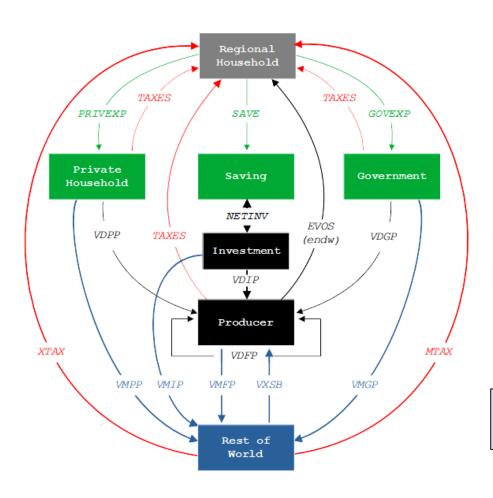
Agenda

- 1. This Study
- 2. Data and Method
- 3. Results
- 4. Final Remarks

1. This Study

Overview of the study

- We run a global comprehensive assessment of a carbon tax (US\$ 50/tCO₂) on international shipping
- We consider all direct and indirect effects on countries with results on:
 - Exports (total and by country/region and sector)
 - GDP (total and by country/region)
 - Maritime emissions (in tCO2)
 - Food prices
 - We find that
 - emissions from ships are reduced
 - exports and real GDP are negatively impacted
 - Food prices is expected to increase


2. Method

GTAP

- We use the **global and multi-region GTAP** version 10 database (reference year: 2014):
 - global static computable general equilibrium model used in **climate policy simulations** by institutions worldwide.
 - reports replicable results for several economic variables.
 - Captures the effects of climate policies on international **trade flows and GDP**, which is very important in the context of maritime shipping.
 - information of 141 countries (35 SIDs, 45 LDCs) and 65 production sectors.
 - we keep the disaggregation of the database at its **highest level** to report results for all potential affected participants under the IMO Governance

An assessment of the economic impact of a maritime carbon tax by shocking the changes in the maritime transport cost

GTAP and GTAP-E

Main characteristics:

- sets of equations from economic theory
- Competitive markets, constant returns to scale technology
- describes the domestic economy and its interactions of all agentes

Model implementation: marketclearing condition.

GTAP has 20 million equations

Data: Carbon Emissions from Ships

GTAP database: No information on carbon emissions from ships.

We **estimate carbon emissions** from intern. shipping using:

- Trade data from GTAP/UN COMTRADE (in US\$ and tons).
- Sea transport share of trade updated based on Cristea et al (2013)* and Machine Learning techniques
- Associated average ship by bilateral trade flow and sector.
- Shipping distance per trade flow (Seadistances.org) and ship characteristics per bilateral trade flow and sector.
- We calculate total shipping emissions of 863,096,687 tCO₂, or 89.5% of total emissions (4th IMO GHG)
- GTAP has data on shipping costs per transport mode (in million US\$)

^{*}Cristea, A., Hummels, D., Puzzello, L., & Avetisyan, M. (2013). Trade and the greenhouse gas emissions from international freight transport. Journal of environmental economics and management, 65(1), 153-173.

GTAP and Carbon Tax Design

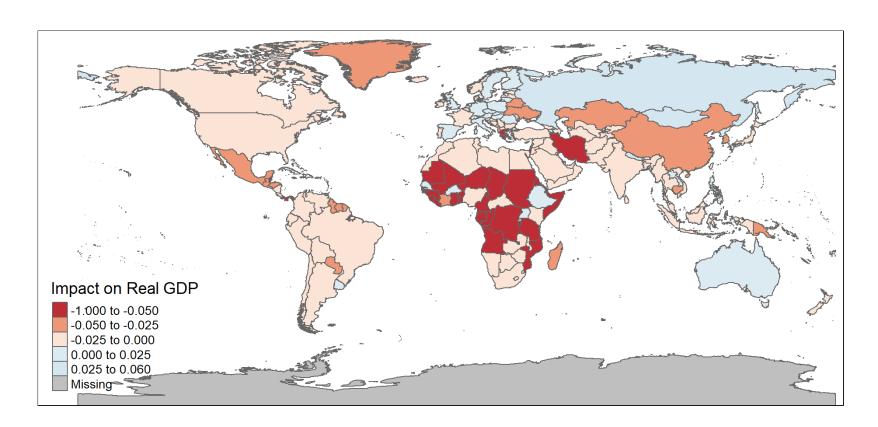
We follow Lee et al. (2013)* to calculate the shock:

$$\Delta s_{mijs} = \frac{\tau \times CO2emissions_{mijs}}{margincost_{mijs}}$$

 τ is the carbon tax that affects directly costs (in US\$/ton), and CO2emissions are the total maritime (m) CO2 emissions from the bilateral trade flow between country i and j for commodity s.

The tax impacts the model by changing relative transport prices:

$$TransportPrices_{mijs} = margincost_{mijs} (1 + \Delta_m + \Delta_i + \Delta_j + \Delta_s + \Delta s_{mijs})$$


m, i, j, s represent transport mode, country of origin and destination, and commodity, respectively.

^{*} Tsung-Chen Lee, Young-Tae Chang, Paul T.W. Lee. (2013) Economy-wide impact analysis of a carbon tax on international container shipping. Transportation Research Part A 58. 87–102.

3. Results

Results – Real GDP (Δ %)

Impacts on world real GDP in %, by country/region (baseline = 2014)

Results – GDP Impacts

Impacts on world real GDP in % by region (baseline = 2014)

Region	Real GDP
Oceania	-0.001%
South and Southeast Asia	-0.017%
North America	-0.004%
Central and South America	-0.016%
Europe	0.004%
Western Asia and Former Soviet Union	-0.020%
North Africa	-0.010%
Western Africa	-0.067%
South and South-Central Africa	-0.049%
Eastern Africa	-0.087%
Other	0.005%
Total change (all countries)	-0.295%
SIDs	-0.007%
LDCs	-0.052%

Results – Emissions Impacts

Impacts on the global CO_2 e shipping emissions and other variables (baseline = 2014)

Item	Carbon Tax of
	US\$ 50/tCO2e
<u>Emissions</u>	
Before carbon tax (tCO2e)	863,096,687
After carbon tax (tCO2e)	802,748,261
Change in emissions (tCO2e)	-60,348,426
(change in emissions using GTAP in 2014, %)	-7.0%
(change in emissions using 4th IMO GHG in 2014, %)	-6.3%
(change in emissions using 4th IMO GHG in 2008, %)	-7.6%
Other variables (% change)	
Total exports	-0.20%
Total nominal GDP	0.02%
Total real GDP	-0.30%
Global import food prices	4.17%

4. Final Remarks

Key Takeaways

- Possible to perform global comprehensive impact analysis with results by country/sector: general equilibrium effects considering the dynamics of the global economy and price effects
- Important to rigorously calculate the carbon emissions from ships when assessing impact of MBMs;
- 3. GTAP is a clear and transparent model used to simulate climate policy
- 4. Results for 141 countries/regions (incl. SIDs and LDCs)
- Potential to analyze specific routes in terms of trade flows and sectors

Next Steps

Further improvements:

- i. **Dynamic impacts:** Estimate impacts over time.
- ii. Update carbon emissions using:
 - i. full ship distribution by bilateral trade flow and sector.
 - ii. the current policies (EEDI, EEXI, CII) when assessing impact evaluation of candidate measures over time.

iii. Update GTAP:

- We are now using GTAP version 11.
- ii. Modal substitution for 20 sectors.
- iv. Impact of other MBMs and combined economic measures: Simulate other economic measures under debate here at IMO.
- v. Compensation/offsets: We intend to conduct impact assessment of potential compensation mechanisms (exemptions, revenue recycling, different schedules) to reduce regional inequalities from measures.

 Fipe Fundação Instituto de Pesquisas Econômicas 16

Thank you!

pereda@usp.br