Ad-hoc Expert meeting – UNCTAD 24 August 2023

Ecological Economics 212 (2023) 107917

Contents lists available at ScienceDirect

Ecological Economics

journal homepage: www.elsevier.com/locate/ecolecon

Ship-owner response to carbon taxes: Industry and environmental implications

Pierre Cariou^a, Ronald A. Halim^b, Bradley J. Rickard c,d,*

b Principal Transport Economist, Equitable Maritime Consulting, The Hague, Netherlands

d KEDGE Business School, Talence 33000, France

^c Food and Agricultural Economics, Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY 14853, United States of America

Agenda

- 1. Rational
- 2. Findings
- 3. Conclusions

1. Rational

- 1. The impact of environmental maritime policies depends, to a large extent, on the reaction of ship-owners to the new policies (DNV + UNCTAD 2021)
- 2. This reaction is to a large extent explained by the sensitivity of trade (transport quantities) to maritime transit time and cost.
- 3. This is often neglected in analysis, although elasticity can be significant for some markets
- 4. For EEXI + high case scenario: +10% avg in MTC =-0.4% for Agriculture trade and -1.6% for Food & Beverage trade.

Idea: Use available data (DNV + UNCTAD + CEPII + World Bank+ Clarksons) on grain and soybean market to assess:

- 1. how sensitive is trade to maritime transport cost and transit time (augmented gravity model) for grain and soybean;
- 2. how these elasticities influence the choice of ship-owners on optimal speed, level of trade and emission.
- 3. How the level of taxation may change the optimal choice.

2. Findings. Trade (volume) is elastic to maritime transit time and cost

Gravity model estimates for grain and soybean export volume (in tonnes).

	Grain						Soybeans					
Log d ₀	OLS		OLS_FE		PPML_FE		OLS		OLS_FE		PPML_FE	
	-1.066*** (-8.51)	- X2	-1.629*** (-9.03)	- 232	-0.872^^^ (-4.74)		-0.374 (-1.40)		-1.131*** (-2.93)		-1.563^^^ (-6.41)	
CONTy	1.535*** (4.02)	1.431*** (3.82)	1.645*** (2.92)	1.506*** (2.91)	1.136*** (2.62)	1.166*** (2.72)	0.923 (1.18)	0.935 (1.38)	2.009 (1.58)	2.425** (2.45)	0.852* (1.69)	1.663*** (3.86)
LANG ₄	(0.20)	0.531 (1.46)	(0.010	0.481 (1.11)	0.038	0.470 (1.41)	(0.89)	0.797*	0.321 (0.40)	0.722 (1.06)	0.443	0.422* (1.76)
CLY ₀	1.424** (2.40)	1.024* (1.92)	0.876 (1.03)	(0.60)	1.472*** (2.87)	1.117** (2.31)	-1.300 (-1.36)	-0.676 (-0.90)	-2.580* (-1.67)	-1.534 (-1.49)	-3.436** (-2.01)	-1.467* (-1.73)
Log Timey		-0.980*** (-8.33)		-1.393*** (-8.09)	88.138	-0.917*** (-4.25)		-0.925*** (-3.91)		-1.220*** (-4.01)	- A	-0.944*** (-4.48)
Log Cost _q		-1.298*** (-8.37)		-1.445*** (-8.14)		-0.785*** (-4.78)		-1.538*** (-9.13)		-1.663*** (-7.05)		-0.876*** (-3.50)
Log Yt	0.804*** (17.62)	0.658*** (13.36)					(12.12)	0.421*** (6.94)			L	12010-0-2
Log Fj	0.713*** (15.29)	0.641*** (14.37)					(8.88)	0.242*** (4.43)				
Constant	2.824*** (2.64)	-6.660*** (-11.90)	-2.093 (-1.12)	-14.035*** (-9.87)	-6.817*** (-3.72)	-12.777*** (-14.53)	-2.239 (-0.91)	-7.018*** (-7.73)	-6.041 (-1.38)	-14.686*** (-6.05)	-7.325*** (-4.28)	-16.121*** (-15.92)
Exporter-FE	NO	NO	YES	YES	YES	YES	NO	NO	YES	YES	YES	YES
Importer-FE	NO	NO	YES	YES	YES	YES	NO	NO	YES	YES	YES	YES
Observations	680	680	680	680	683	683	314	314	314	314	314	314
R-squared	0.435	0.497	0.602	0.650	0.805	0.839	0.487	0.660	0.667	0.775	0.987	0.992

Note: *** p < 0.01, ** p < 0.05, * p < 0.1.

Illustrative exemple of impact of trade-time elasticity on ship-owners' decision

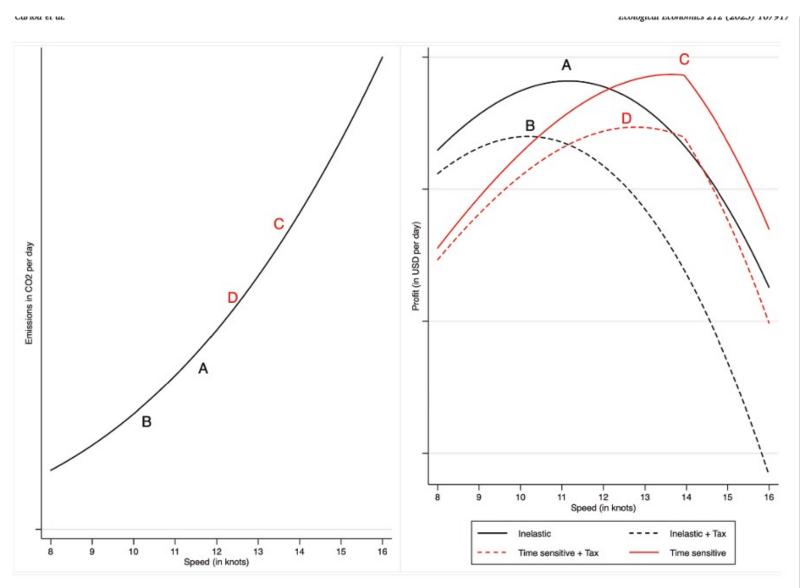
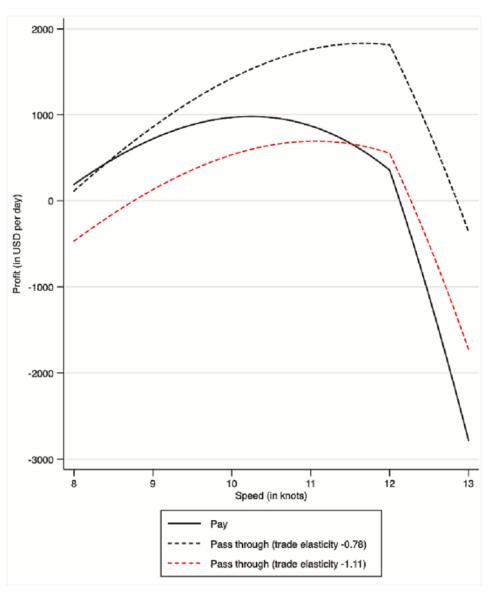


Fig. 1. Emission- and profit-speed relationships with time sensitive demand.

Illustrative exemple of impact of trade-cost elasticity on ship-owners' decision



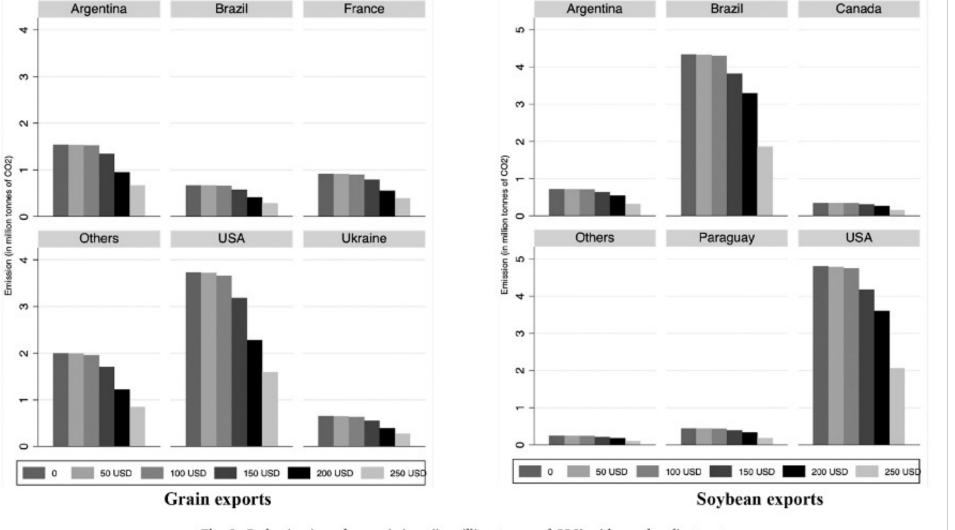


Fig. 2. Profit-speed relationship assuming a higher trade-cost elasticity: U.S. grain exports with tax at 150 USD per tonne of fuel.

Simulation of impact of trade-elasticity and tax level on emissions' level (without change in trade

= supply adjustment with more vessels to compensate reduced speed)

EQUIS AACSB AMBA

3. Conclusions

- 1. When trade is not sensitive to time and cost, we can expect a positive impact from a tax => The ship-owners pass-through the tax without any impact on trade and ship-owners slow down the speed of the vessel (reduction in emissions).
- 2. When trade is sensitive to time and cost and when the tax is small (less than 100 USD for soybean and grain), the ship-owner may have interest in paying the tax and do not change the speed => no impact on emissions (same speed and trade level).

- 3. When trade is sensitive to time and cost and the tax is high (more than 100 USD for soybean and grain), the ship-owner may have interest in passing through the tax and to reduce the speed => large impact on emissions and on trade (long-term.
- => this may be enough to trigger a change in technology to limit compliance costs (new propulsion or fuel) and/or to limit the impact of the decrease in speed (e.g. routing; wind propulsion or assistance...).

Thank you for listening

Next?

Paper to be presented at International Association of Maritime Economists Conference 2023 – Long Beach (5-8 Sept. 2023)

Impact of maritime taxation for (19 different agricultural trade x 150 countries)

