

On impact assessments: my 10 cents

(or, 2 cents/minute)

Harilaos N. Psaraftis Professor, DTU

Outline

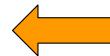
- DTU's involvement in an IA
- Other IAs and why IAs may yield different results
- Prospects for the "IA-to-be" (as per MEPC80)

BIG QUESTION: Where was I on 14-12-2020?

Previous meeting of the group

BIG QUESTION: Where was I on 14-12-2020?

COVID-19



Before COVID-19

E

INTERSESSIONAL MEETING OF THE WORKING GROUP ON REDUCTION OF GHG EMISSIONS FROM SHIPS 7th session Agenda item 2 ISWG-GHG 7/2/20 7 February 2020 ENGLISH ONLY

FURTHER CONSIDERATION OF CONCRETE PROPOSALS TO IMPROVE THE OPERATIONAL ENERGY EFFICIENCY OF EXISTING SHIPS, WITH A VIEW TO DEVELOPING DRAFT AMENDMENTS TO CHAPTER 4 OF MARPOL ANNEX VI AND ASSOCIATED GUIDELINES, AS APPROPRIATE

Detailed impact assessment of the mandatory operational goal-based short-term measure

Submitted by Denmark, France and Germany

IA authors

DETAILED IMPACT ASSESSMENT OF THE MANDATORY OPERATIONAL GOAL-BASED SHORT-TERM MEASURE proposed in doc. ISWG-GHG 7/2/9

Harilaos N. Psaraftis and Thalis Zis
Department of Technology, Management and Economics
Technical University of Denmark

Ronald A. Halim Equitable Maritime Consulting

Focus

- LDCs/SIDS
- South America
- India

ΑI	BSTR	ACT	4			
ΑI	BBRE	VIATIONS	5			
1.	INT	RODUCTION	7			
2.	AS	SUMPTIONS AND METHODS	. 10			
	2.1.	Challenges of a detailed impact assessment	. 10			
	2.2.	Outline of approach	. 14			
3.	UP	DATE OF LITERATURE	. 16			
	3.1	General literature	. 16			
	3.2	Literature on connectivity	. 19			
	3.3 N	liscellaneous other literature	. 22			
4.	LIS	T OF POTENTIAL NEGATIVE IMPACTS	. 24			
5.	TH	E SOUTH AMERICAN CASE STUDY	. 27			
	5.1.	Introduction	. 27			
	5.2.	Chile and Peru	. 29			
	5.3.	Argentina	. 33			
	5.4.	Brazil	. 34			
	5.5.	Modal shift analysis	. 36			
	5.6.	Potential negative impacts	. 39			
6.	TH	E LDCs/SIDS CASE STUDY	. 41			
	6.1.	Scope	. 41			
	6.2.	Fleet Statistics on SIDS	. 42			
	6.3.	Number of Ports and Port Connectivity	. 44			
	6.4.	Main trading partners and distance	. 46			
	6.5.	Illustrative freight rates for five countries	. 48			
	6.6.	Potential negative impacts	. 49			
	6.7.	Potential mitigation measures	. 51			
7.	TH	E INDIAN CASE STUDY	. 52			
	7.1.	Introduction	. 52			
	7.2.	Modal shift analysis	52			
	7.3.	Potential negative impacts	55			
8.	CC	NCLUSIONS (SUMMARY)				
		DWLEDGMENTS				
R	EFER	RENCES	59			
	LITHODS, BIOS					

NOTE

- Submission and IA concerned ONLY the CII component of the short-term measure
- At the time, EEXI was a competitor
 measure (promoted by Japan and Norway)

- MEPC 75 (fall 2020) decided on a combined EEXI/SEEMP/CII measure
- Also decided to conduct a Comprehensive Impact Assessment (CIA), of the combined measure

2 journal papers produced

Int Environ Agreements https://doi.org/10.1007/s10784-020-09523-2

ORIGINAL PAPER

Impact assessment of a mandatory operational goal-based short-term measure to reduce GHG emissions from ships: the LDC/SIDS case study

Harilaos N. Psaraftis 10 · Thalis Zis 1

Focus: LDCs/SIDS

Accepted: 22 December 2020

© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

2 journal papers produced ii

Maritime Economics & Logistics https://doi.org/10.1057/s41278-021-00194-7

ORIGINAL ARTICLE

Impacts of short-term measures to decarbonize maritime transport on perishable cargoes

Thalis P. V. Zis1 · Harilaos N. Psaraftis1

FOCUS: South America

Accepted: 26 May 2021

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Basic results

South America & India

- Low or no risk of negative impacts
- Positive impacts mainly in the form of reduction of fuel consumption and hence fuel costs and freight rates
- These could translate into a reduction of CIF prices of imports or an increase of FOB prices of exports, or both

LDCs/SIDS

 Some risk of negative (and disproportionally negative) impacts exists

Fall 2020: UNCTAD's review of all IAs

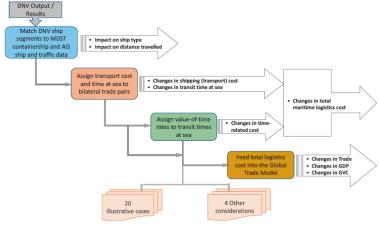
E

INTERSESSIONAL MEETING OF THE WORKING GROUP ON REDUCTION OF GHG EMISSIONS FROM SHIPS 7th session Agenda item 2

13 October 2020 ENGLISH ONLY

FURTHER CONSIDERATION OF CONCRETE PROPOSALS TO IMPROVE THE OPERATIONAL ENERGY EFFICIENCY OF EXISTING SHIPS, WITH A VIEW TO DEVELOPING DRAFT AMENDMENTS TO CHAPTER 4 OF MARPOL ANNEX VI AND ASSOCIATED GUIDELINES, AS APPROPRIATE

Review of impact assessments by UNCTAD


Note by the Secretariat

2021: UNCTAD's OWN (C)IA

Figure 1: UNCTAD's methodological approach to Task 3

Source: UNCTAD, 2021.

Figure 10: Simulated percentage change in income (GDP), by country grouping, compared to 2030 baseline scenario

Additional IAs

- MANY prior studies in the literature assessing impacts of carbon pricing on states
- All proposers of medium term measures submitted their own IAs of these measures and of other measures (eg, of a levy)
- Those who spoke earlier
- Expert workshop in May 2023- comparative assessment of mid-term measures (UNCTAD)

Why IAs results differ?

- Different measures assessed
 - EEXI/SEEMP/CII measure will likely have a different impact from that of a carbon levy, let alone a combined levy/GFS measure
- Differences in input data
 - Can we at least agree on the input?
- Differences in modelling approach
 - Assumptions, method, etc

The CIA-to-be: main challenges

- What is to be assessed? Not well defined
 - -Economic measure
 - -Technical measure (fuel standard)
 - -Offsetting or no offsetting?
 - -Imprecise timeline (close to 2050)
 - -etc
- How to distribute the revenues
- Highly divergent views on impact & measures

From MEPC80

APPENDIX 1

MEASURES MATRIX

				Economic measure / element [on the basis of maritime GHG pricing mechanism]										
				a	b	С	d	e	f	g	h	i	j	k
				SRUs*	Sustainable Fund throu sector purp	gh RÚs*		GHG pi	ricing on a	II GHG emis	sions / Levy			Feebate
Disbursement of any revenues				No revenues generated, but addresses/ reduces price gap and incentivise first movers	Capacity building and negative impact mitigation	RD&D	Admin	RD&D	Reward for eligible fuels	General GHG mitigation and adaptation	Address DNI as appropriate	Equitable transition	Admin	Reward for eligible fuel
	I	Goal-based fuel Standard	Sustainability [criteria] framework											
Technical measure / element	II	Goal-based fuel standard	FCUs and GRUs*											
	Ш	Goal-based fuel standard												
		[placeholder for another option]												

^{*} Some consider the flexibility element of the goal-based fuel standard to be a part of the technical element, others consider it an economic element

List of abbreviations:

DNI: Disproportionately Negative Impacts.

FCUs: Flexible Compliance Units.

GRUs: GHG Remedial Unit.

RD&D: Research Development and Deployment.

RUs: Remedial Units.

SRUs: Surplus Reward Units.

APPENDIX 3

PARAMETERS FOR COMBINATIONS

APPENDIX 2

COMBINATIONS

Combination	Technical	Economic
number	element	elements
1	I	a,b,c,d
2	III	e,f,g,h,i,j
3	II	h,i,j,k
4	II	b,c,d
5	II	e,f,h,i,j
6	II	e,f,g,h,i,j
7	I	a,b,c,d,k

Parameters for combination 1

TtW GHG intensity pathway of fuel/energy			
Sustainability (criteria) framework to identify sustainable fuels/energy			
SRUs price: to be determined by market (assumptions could be made)			
RUs price, two options:			
Option 1: Given price before compliance period; or			
Option 2: 95th percentile of actual SRUs price			
Distribution of revenue for b,c,d			

Parameters for combination 2

GFI pathway		
Level of the levy		
Distribution of revenue for e,f,g,h,i,j		
Prioritization of revenue use		

Parameters for combination 3

Amount of revenue for h,i,j		
Feebate method		

Parameters for combination 4

GFI pathway
RU price
Distribution of SSF over causes

Parameters for combination 5

GFI pathway			
GRU price			
Level of the levy			
Distribution of revenue for e,f,h,i,j			
Prioritization of revenue use			

Parameters for combination 6

GFI pathway				
GRU price				
Level of the levy				
Distribution of revenue for e,f,g,h,i,j				
Prioritization of revenue use				

DTU

Our papers (sample)

- Bektas, T., Ehmke, J. F., Psaraftis, H.N., Puchinger, J., 2018, The role of operational research in green freight transportation, <u>European Journal of Operational Research</u>, doi.org/10.1016/j.ejor.2018.06.001.
- Topali, D., Psaraftis, H.N., 2019, the Enforcement of the Global Sulphur Cap in Maritime Transport, Maritime Business Review, doi.org/10.1108/MABR-12-2018-0050
- Zis, T., Psaraftis, H.N., Panagakos, G., Kronbak, J., 2019, Policy measures to avert possible modal shifts caused by Sulphur regulation in the European Ro-Ro sector, <u>Transportation Research Part D</u> 70, 1–17.
- Psaraftis, H. N., 2019, Ship routing and scheduling: the cart before the horse conjecture, Maritime Economics and Logistics, Volume 21, Issue 1, pp 111-124.
- Psaraftis, H.N., 2019, Speed Optimization vs Speed Reduction: the Choice between Speed Limits and a Bunker Levy, Sustainability, 11, 2249; doi:10.3390/su11080000
- Lindstad, E., Borgen, H., Eskeland, G., Paalsson, C., Psaraftis, H.N., Turan, O., 2019 The Need to Amend IMO's EEDI to Include a Threshold for Performance in Waves (Realistic Sea Conditions) to Achieve the Desired GHG Reductions, <u>Sustainability</u> 11, 3668; doi:10.3390/su11133668.
- Psaraftis, H.N., 2019, Speed Optimization vs Speed Reduction: are speed limits better than a bunker levy? Maritime Economics and Logistics 21, 524-542, doi.org/10.1057/s41278-019-00132-8
- Panagakos, G., de Sousa Pessoa, T., Barfod, M., Desypris, N., Psaraftis, H.N., 2019, Monitoring the Carbon Footprint of Dry Bulk Shipping in the EU: An Early Assessment of the MRV Regulation, Sustainability, 11, 5133: doi:10.3390/su11185133.
- Psaraftis, H.N., Lagouvardou, S., 2019, Market Based Measures for the reduction of green house gas emissions from ships: a possible way forward, Samfundsøkonomen 4/19, 60-70.
- Psaraftis, H.N., Kontovas, C.A., 2020, Influence and Transparency at the IMO: the Name of the Game. Maritime Economics and Logistics, Vol. 22, issue 2, 151-172.
- Wang, S., Zheng, L., Psaraftis, H.N., 2020, Three potential benefits of the EU and IMO's landmark efforts to monitor carbon dioxide emissions from shipping, <u>Frontiers of Engineering Management</u>, https://doi.org/10.1007/s42524-020-0096-2
- Lagouvardou, S., Psaraftis, H.N., Zis, T., 2020, A Literature Survey on Market-Based Measures for the Decarbonization of Shipping, Sustainability, 12(10), 3953; doi.org/10.3390/su12103953
- Tillig, F., Ringsberg, J., Psaraftis, H.N., Zis, T., 2020, Reduced environmental impact of marine transport through speed reduction and wind assisted propulsion, <u>Transportation Research Part D</u>, 83, DOI: 10.1016/j.trd.2020.102380.
- Zis, T., Psaraftis, H.N., Ding, L., 2020, Ship weather routing: a taxonomy and survey, Ocean Engineering, vol. 213, DOI: 10.1016/j.oceaneng.2020.107697.
- Zis, T., Psaraftis, H.N., Tillig, F., Ringsberg, J., 2020, Decarbonizing maritime transport: A RoPax case study. Research in Transportation Business and Management, Volume 37, December 2020, 100565.
- Rødseth, Ø. J., Psaraftis, H.N., Krause, S., Raakjaer, J., Coelho, N.F. 2020, AEGIS: Advanced, Efficient and Green Intermodal Systems, <u>IOP Conference Series, Materials Science and Engineering</u>, **929** 012030, presented at the 3rd International Conference on Maritime Autonomous Surface Ship (ICMASS 2020) 11-12 November 2020, Ulsan, South Korea.
- Psaraftis, H.N., Kontovas, C.A., 2021, Decarbonization of maritime transport: Is there light at the end of the tunnel? Sustainability 13, 237. https://doi.org/10.3390/su13010237
- Psaraftis, H.N., Zis, T., 2021, Impact assessment of a mandatory operational goal-based short-term measure to reduce GHG emissions from ships: the LDC/SIDS case study, <u>International Environmental Agreements</u>: Politics, <u>Law and Economics</u>, https://doi.org/10.1007/s10784-020-09523-2
- Zisi, V., Psaraftis, H.N., Zis, T., 2021, The impact of the global sulfur cap on CO2 emissions, Maritime Business Review, https://doi/10.1108/MABR-12-2020-0069
- Wang, S., Zheng, L., Psaraftis, H.N., Yan, R., 2021, Implications of the EU's inclusion of maritime transport in Emissions Trading System for shipping companies, <u>Engineering</u>, https://doi.org/10.1016/j.eng.2021.01.007
- Psaraftis, H.N., Zis, T., Lagouvardou, S., 2021, A comparative evaluation of Market Based Measures for shipping decarbonization, <u>Maritime Transport Research</u>, https://doi.org/10.1016/j.martra.2021.100019
- Zis, T., Psaraftis, H.N., 2021, Impacts of short-term measures to decarbonize maritime transport on perishable cargoes, Maritime Economics and Logistics, https://doi.org/10.1057/s41278-021-00194-7
- Wang, S., Psaraftis, H.N., Qi, J., 2021. Paradox of International Maritime Organization's carbon intensity indicator. Communications in Transportation Research 1, in press.
- Lissilour, R., Fulconis, F., Psaraftis, H.N., 2021, A Nomos Perspective of Shipping Service Industries, <u>European Review of Service Economics and Management</u>, https://DOI:10.48611/isbn.978-2-406-12261-6.p.0125
- Psaraftis, H. N., 2021, Shipping decarbonization in the aftermath of MEPC 76, Cleaner Logistics and Supply Chain, https://doi.org/10.1016/j.clscn.2021.100008
- Yan, R., Wang, S., Psaraftis, H.N., 2021, Data analytics for fuel consumption management in maritime transportation: Status and perspectives, <u>Transportation Research Part E, https://doi.org/10.1016/j.tre.2021.102489</u>
- Qi, J., Wang, S., Psaraftis, H.N. 2021, Bi-level optimization model applications in managing air emissions from ships: A review. <u>Communications in Transportation Research</u>, https://doi.org/10.1016/j.commtr.2021.100020
- Qi, Y., Harrod, S., Psaraftis, H.N., Lang, M., 2022, Transport service selection and routing with carbon emissions and inventory costs consideration in the context of the Belt and Road Initiative, <u>Transportation Research Part E, https://doi.org/10.1016/j.tre.2022.102630</u>
- Lagouvardou, S., Psaraftis, H.N., Zis, T., 2022, Impacts of a bunker levy on decarbonizing shipping: a tanker case study, <u>Transportation Research Part D</u>, <u>https://doi.org/10.1016/j.trd.2022.103257</u>
- Lagouvardou, S., Psaraftis, H.N., 2022, Implications of the EU Emissions Trading System (ETS) on European container routes: a carbon leakage case study, <u>Maritime Transport Research</u>, https://doi.org/10.1016/j.martra.2022.100059
- Tan, R., Psaraftis, H.N., Wang, D.Z.W, 2022, The speed limit debate: Optimal speed concepts revisited under a multi fuel regime, <u>Transportation Research Part D</u>, https://doi.org/10.1016/j.trd.2022.103445

THANK YOU

hnpsar@dtu.dk

