United Nations Conference on Trade and Development

UNCTAD study visit to India, Nagpur , 14-18 January 2019 DA Project 1617K on Promoting Cotton By-Products in Eastern and Southern Africa

Presentation on

India's Experience on Priority Cotton by-Productbased activity: Briquetting and Pelleting

by

Dr. S. K. Shukla, Principal Scientist & In-charge, Ginning Training Centre, ICAR-CIRCOT, Nagpur, India

The views expressed in this document are those of the author(s) and do not necessarily reflect the views of the UNCTAD secretariat.

India's Experience on "Priority Cotton by-productbased activity: Briquetting and Pelleting"

UNCTAD's Technical Cooperation Project on "Promoting Cotton by-products in Eastern and Southern Africa

Dr. S. K. Shukla Principal Scientist & In-charge

ICAR-Central Institute for Research on Cotton Technology (CIRCOT) Amravati Road, Nagpur

Ginning Training Centre

Cotton Sector in India (2017-18)

- Area Under Cotton Cultivation
- Cotton Production
- Cottonseed production
- Cotton Stalk Production
- Cotton Farmers

- : 10.5 million hectares
- : 5.88 million tonnes
- : 11.5 million tonnes
- : 26.0 million tonnes
- : 5.0 million

Cotton Stalks and Its Commercial Utilization

Cotton Stalks: Possibility of Entrepreneurship

□ Availability: 26 million tonnes annually

□ Utilization: About 10% commercially utilized

□ Properties: About 60% holocellulose, 27% lignin and 6% ash,

Gross calorific value: 4000 kcal/kg (16.7 MJ/kg)

Commercial Uses: Briquettes, Pellets, Compost, Power generation and Particle Boards

□ Under Trials: Pulp And Paper, Hard Boards, etc.

Properties of other biomasses and its suitability

S.No.	Agro-wastes	Туре	VM, %	Ash %	Fixed C%	HHV, MJ/kg	Pelletisation/Briq uetting Potential
1	Cotton	Stem	70.3	6.0	19.7	16.7	Very Good
2	Soya	Stem	76.9	6.6	16.4	16.4	Good
3	Groundnut	Shell	68.0	2.8	19.1	16.7	Good
4	Sorghum	Stem	69.4	6.4	18.82	16.6	Good
5	Mustard	Stem	71.2	5.2	19.38	17.3	Good
6	Black gram	Stem	68.2	3.5	23.4	16.3	Good
7	Wheat	Stem	72.1	3.4	23.9	15.4	Good
8	Bagasse	Stem	75.8	4.2	20.1	18.1	Very Good
9	Garden lawn	Leaves	72.6	3.2	17.3	15.2	Good

Industrial Applications of Cotton Stalks

Commercial Utilization of Cotton Stalks in India

Briquetting Plants

- Installed plants: about 250
- Capacity/plant: 20-25 TPD
- Size of briquettes: 90 mm diameter
- Uses: As substitute for coal for firing boilers in industries, brick kilns, etc.

- Raw materials: Cotton Stalk (150,000 T for 4 months:); Soybean; saw dust, wood chips, bagasse, etc.,
- > Benefits: Cheap-80% of Coal Price; Renewable Source,

farmers' income-US\$50/ha for supply of chipped biomass

Flow Chart For Briquetting Plant

Connected Loads & Manpower

BRIQUETTING PLANT

□Connected load: 90 HP

- Screw conveyor:
- Press:
- Kuppi motor:
- Lubricant:

3 HP

□Manpower requirement: 6/shift

Logistics for Supply of Cotton Stalks

- Uprooting of cotton stalks: 3-4 manpower/acre
- Collection after 1 week sun drying: 2 manpower
- Chipping: Tractor driven chipper, capacity 2 TPH, 11 manpower, 2 tractor cum trolleys
- Transportation: within 50 km
- Total logistics Price: Rs. 1500 per tonne at factory gate (US\$ 22 per tonne)

Chipping of Cotton Stalks

Shredding of Cotton Stalks

Briquetting Cost Breakup & Profit

Operations	Approximate cost per tonne (Rs.)
Uprooting	500 (\$ 7.1)
Material cost	350 (\$ 5.0)
Chipping	200 (\$ 2.9)
Transportation within 30-40 km	radius 650 (\$ 9.3)
Unloading at briquetting factor	y site 50 (\$ 0.71)
Sun drying labour cost	50 (\$ 0.71)
Sub total	1800 (\$ 25.7)
Weight loss @ 10%	180 (\$ 2.57)
Hammer milling	175 (\$ 2.5)
Briquetting	650 (\$ 9.3)
Total cost	2805 (\$ 40.0)
Profit: (\$ 5-\$10): Cost of briqu	ettes 3200-3600 (\$ 45.7-\$51.4)

Commercial utilization: Briquetting Plant

Α	Capital Investment (20 TPD Capacity)	INR in million	USD
	Land and Building (Land Area: 2 acre ; Building for Machinery: 150 sq. m ; Material storage area: 1000 sq. m ; Office Building: 50 sq. m)	1.50	21,428
	Plant and Equipment	2.50	35,714
	Auxiliary and Service Equipment (Chipper: 3 & Handling Tools)	0.50	7,142
	Total investment	4.50	64,285
В	Operational Expenses		
	Raw Material Cost for 1 year (20 TPD for 300 days @ Rs. 2800 per tonne; \$40/tonne)	16.80	240,00
	Operational cost including repair and Maintenance and other charges (Rs. 600/tonne) for 1 year	3.60	51,429
С	Gross Annual Income (Rs. 4000/tonne)	24.00	342,857
	Net annual income (Rs. 400/tonne)	2.40	34,286
D	Payback period: 23 months Return	on investmen	t : 43.5%

Recommended Briquette Applications

Boilers	For steam generation
Food processing	Distilleries, bakeries, canteens, restaurants
industries	and drying etc.
Textile process	Dyeing, bleaching etc.
houses	
Agro-products	Tobacco curing, tea drying, oil milling etc.
Clay products	Brick kilns, tile making, pot firing etc.
Domestic	Cooking and water heating
Gasification	Fuels for gasifiers
Charcoal	Suitable for making charcoal in kilns
Cremation	Burning of dead beings

Global Scenario of Pellet Production

□ Total Production: 36.2 million tonnes.

Europe and Northern America, global production (62% and 34%) and consumption (81% and 15%)

Global Scenario of Pellet Production

Applications of Pellets

- In the Netherlands, Belgium, and the UK, pellets are used mainly in large-scale power plants
- In Denmark and Sweden, pellets are used in large-scale power plants, medium-scale district heating systems, and small-scale residential heating system
- In Germany, Austria, Italy, and France, pellets are mostly used for small-scale residential and industrial heating purposes
- In USA, 60% pellet production is used for residential heating white 40% is exported particularly to EU nations
- In India, Pellets are used for boiler firing as well as for cooking of meals in restaurants (35% of commercial gas cost)

Applications of Pellets

Commercial Utilization of Cotton Stalks in India (Contd.)

Pelleting Plant

- Installed Pelleting plants : 500
- Capacity/plant: 3 TPD & 60-80 TPD
- Size of pellets: 6, 8 and 10 mm diameter
- Uses: Boilers and Cooking in Restaurants

- Raw materials: Cotton Stalk (200,000 T for 4 months:); Soybean; saw dust, wood chips, bagasse, etc.
- > Benefits: Cheap- half the commercial LPG prices; farmers' income-Rs.
 - \$ 50 per ha for supply of chipped biomass

Large Pellet Plants

Small Pellet Plants

Chipped & Milled Cotton Stalks

Pelleting by Extrusion

Connected Loads & Manpower

Small Pelleting plant

- □Connected load: 25 HP
- □Manpower requirement: 3/shift

Large Pelleting plant

□Connected load: 200 HP

□Manpower requirement: 8/shift

Commercial utilization: Pelletting Plant

Α	Capital Investment (3TPD Capacity)	INR in million	USD
	Land & Building: (Land Area: 0.5 acre ; Building for Machinery: 100 sq. m ; Material storage area:500 sq. m ; Office Building: 50 sq. m)	0.50	7,692
	Plant and Equipment	1.00	15,385
	Auxiliary and Service Equipment (Chipper: 1 & Handling Tools)	0.20	3,077
	Total investment	1.70	26,154
В	Operational Expenses		
	Raw Material for 1 year (3 TPD for 300 days @ Rs. 2800 per tonne)	2.52	38,770
	Operational cost including repair and Maintenance and other charges (Rs. 2950/tonne) for 1 year	2.66	40,923
С	Gross Annual Income (Rs. 7500/tonne: \$107.1/tonne)	6.75	103,846
	Net annual income (Rs. 1000/tonne: \$14.3/tonne)	0.54	8,308
D	Payback period: 33 months Return on inve	stment : <mark>30</mark> .	3%

Pellet Fuel Standards

Germany

Austria

New European Standards

		(In plus	Cepruit	GEPRÖFT
	Unit	DIN plus ⁴	DIN 51731⁵	Ö NORM M 7135 ⁶
Diameter	mm	4 - 10	4 - 10	4 - 10
Length		< 5 x D	< 50 mm	< 5 x D
Density	Kg / dm ³	> 1.12	1.0 - 1.4	> 1.12
Water content	%	< 10	< 12	< 10
Abrasion	%	< 2.3		< 2.3
Ash content	%	< 0.5	< 1.5	< 0.5
Energy content	MJ / kg	> 18	17.5 – 19.5	> 18
Sulphur content	%	< 0.04	< 0.08	< 0.04
Chlorine content	%	< 0.02	< 0.03	< 0.02
Nitrogen content	%	< 0.3	< 0.3	< 0.3
Heavy metals	%	regulated	regulated	not regulated

Normative properties according to EN 14961-1:				
Diameter, D and Length, L:	D06 6 ± 1; 3,15 ≤ L ≤ 40			
Moisture, M:	M10 ≤ 10			
Ash, A:	A1.0 ≤ 1,0			
Mechanical durability, DU:	DU 96.5 ≥ 96,5			
Fines, F:	F1.0 ≤ 1,0			
Additives:	1 % (starch)			
Bulk density, BD:	BD600 ≥ 600			
Net calorific value, Q:	Q16.5 ≥ 16,5			
Informative properties according to EN 14961-1				
Nitrogen, N:	N0.5 ≤ 0,5			
Sulphur, S:	S0.05 ≤ 0,05			
Chlorine, Cl:	Cl0.03 ≤ 0,03			
Ash melting behaviour, DT:	DT1200 ≥ 1200			

Pellet Standards of Pellet Fuel Institute, Seattle

Sample	Properties			
	PFI Premium	PFI Standard	PFI Utility	
Bulk density (kg/m ³)	640- 770	610-770	610-770	
Diameter (mm)	5.84-7.25	5.84-7.25	5.84-7.25	
Pellet Durability Index (PDI)	≥ 96.5	≥ 95.0	≥95.0	
Fines % (at the mill gate)	≤ 0.5	≤ 1.0	≤ 1.0	
Inorganic ash %	≤ 1.0	≤ 2.0	≤ 6.0	
Length % greater than 1.5 inches	≤ 1.0	≤ 1.0	≤ 1.0	
Moisture %	≤ 8.0	≤ 10.0	≤ 10.0	
Chloride, ppm	≤ 300	≤ 300	≤ 300	
Heating Value	NA	NA	NA	

Briquetting

Pelleting

Cotton stalks can be effectively used as Renewable source of energy : Briquettes and Pellets

Thank You

Dr. S. K. Shukla Principal Scientist & In-charge

Ginning Training Centre ICAR-Central Institute for Research on Cotton Technology (CIRCOT) Amravati Road, Nagpur

> Mobile. +91 9158507741 E-mail: skashukla2000@gmail.com