The EO Processing Chain: Scatterometry As An Example
Simon Kok Lupemba
Junior remote sensing scientist
JuliaEO24 11/01/2024
Agenda

• Introduction to EUMETSAT.
• The EO processing chain, scatterometry as an example.
• How we use Julia in my team.
• My personal view on Julia for EO processing.
• Introduction to EUMETASAT.
• The EO processing chain, scatterometry as an example.
• How we use Julia in my team.
• My personal view on Julia for EO processing.
An intergovernmental organisation with 30 member states

- Austria
- Belgium
- Bulgaria
- Croatia
- Czechia
- Denmark
- Estonia
- Finland
- France
- Germany
- Greece
- Hungary
- Iceland
- Ireland
- Italy
- Latvia
- Lithuania
- Luxembourg
- The Netherlands
- Norway
- Poland
- Portugal
- Romania
- Slovak Republic
- Slovenia
- Spain
- Sweden
- Switzerland
- Turkey
- United Kingdom
EUMETSAT mission

Primary objective:
Establish, maintain and exploit European systems of meteorological satellites.

Further objective:
Contribute to the operational monitoring of the climate and the detection of global climatic changes.
EUMETSAT Mission Planning

<table>
<thead>
<tr>
<th>Mandatory Programme</th>
<th>Satellite</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteosat Second Generation (MSG)</td>
<td>Meteosat-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meteosat-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meteosat-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meteosat-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meteosat Third Generation (MTG)</td>
<td>MTG-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTG-51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTG-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTG-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTG-52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTG-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUMETSAT Polar System (EPS)</td>
<td>Metop-A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metop-B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metop-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUMETSAT Polar System - Second Generation (EPS-SG)</td>
<td>Metop-SGA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metop-SGB1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metop-SGA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metop-SGB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metop-SGA3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metop-SGB3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional and Copernicus Programme</td>
<td>Jason-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copernicus</td>
<td>Sentinel-3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentinel-3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentinel-3C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentinel-3D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentinel-6 Michael Freilich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentinel-6B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentinel-6C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentinel-6 NG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRISTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO2M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agenda

• Introduction to EUMETASAT.
• The EO processing chain, scatterometry as an example.
• How we use Julia in my team.
• My personal view on Julia for EO processing.
Scatterometer (SCA) – METOP Second Generation
Side looking radar
Data Processing Levels

- Used by NASA, ESA, EUMETSAT and more.
- Level 0: Raw instrument data
- Level 1: Radiometrically and geometrically calibrated geo-located data.
- Level 2: Derived geophysical variables.
Overview of processing chain

Level 0 → L1 Processor → Level 1 → L2 Processor → Level 2

Near Real Time Dissemination

Data Store and Archive
Level 0 – Instrument data

- Comes in data records.
- Contains antenna id, echo, noise measurements, internal temperatures and more.
- Only dimension is time from the internal clock.
- Everything is in unsigned integers. No units.
- Data rate.
 - ASCAT ~5 kB/s, ~20 MB/h (On board averaging)
 - SCA ~ 1.2 MB/s, ~ 4.25 GB/h (No on-board averaging)
Level 1 – Geolocated backscatter

No wind
- Sea surface is flat
- Most energy is reflected away from the sensor

Light wind
- Sea surface roughens
- Some energy is backscattered to sensor

Strong wind
- Sea surface roughness increases
- More energy is backscattered toward sensor

Credit: https://coastwatch.gitbook.io/satellite-course/lectures/ocean-surface-winds
Level 1 processing

- Geolocate using orbit state and data record timestamps (leap seconds matter).
- Use Aux files to convert echo to Radiometrically calibrated backscattering coefficients.
- Add quality flags.
- Compute resampled products.
SZR Makie demo

- \((R, G, B) = (\sigma_{for}, \sigma_{mid}, \sigma_{aft})\)
- Scaled from -36 dB to -10 dB
\[\sigma_0 = gmf(V, \phi_{rel}, \theta) \]
Level 2 – Processing Wind

• Done by OSI-SAF.
• Estimate wind speed and direction based on level 1 backscatter.
• Only over ocean.
• Ambiguities corrections.
• Distance to model function.
• Quality flag.
Winds Makie demo
Soil moisture Makie demo
Beyond level 2

- Not my area of expertise.
- Fusion products.
- Interpolations.
- More complex products.
• Introduction to EUMETASAT.
• The EO processing chain, scatterometry as an example.
• How we use Julia in my team.
• My personal view on Julia for EO processing.
What is Julia used for at EUMETSAT

- Julia is a niche at EUMETSAT
- Visualisation
- Monitoring of science data
- Tools for calibration
- Regression testing
- Prototyping

- Julia is not used in the operational processing chain
Agenda

- Introduction to EUMETASAT.
- The EO processing chain, scatterometry as an example.
- How we use Julia in my team.
- My personal view on Julia for EO processing.
My personal view on Julia for EO processing.

- Opportunities
 - High performance scientific computing.
 - Composability via package could improve reusability.
 - More open source.
 - Flexible data types.
 - Potential in the whole chain. From L0 processing to large weather models.

- Challenges
 - EUMETSATS is not a first mover (Long operational programs).
 - Awareness.
 - Industry uptake.
 - Maturity.
 - Open source vs proprietary information.
My personal view on Julia for EO processing.

• The road forward.
 • I hope to publish AscatData.jl.
 • Contribute to open source packages relevant for EUMETSAT.
 • Prove the value of Julia through non-operational tools.
 • Keep an eye out for first movers.
 • Advocate for Julia at EUMETSAT.
Engage

- Use the data. https://data.eumetsat.int/
- EUMETSAT Meteorological Satellite Conference 2024
- I hope to see Julia users at the conference.
- Early Career Scientists Initiative (Under 32 and under 2 years work experience)
Thank you!
Questions are welcome.