
1/17/24

1

JuliaEO Workshop 2024:

Introduction to Julia:
Creating Packages for Earth Observational Work

Presented By: Nathanael Wong
material at https://github.com/natgeo-wong/JuliaEO2024_Nat

1

Notes

• This presentation (especially the parts using Terminal) are geared towards Linux and 
macOS users
– Some familiarity with Terminal is required (don’t worry, I’ll go through step by step)
– For Windows users, I recommend using the Windows Terminal

• It is also good to learn how to fiddle around and thus understand the concepts of package 
environment especially when developing packages

2

Notes
• Go to https://github.com/natgeo-

wong/JuliaEO2024_Nat

• Clone the repository there

3

Aim

• The Julia community and ecosystem is relatively small
– We don’t have the wide, extensive community that Python has
– A lot of packages are therefore developed by individuals like myself

4

https://github.com/natgeo-wong/JuliaEO2024_Nat
https://github.com/natgeo-wong/JuliaEO2024_Nat
https://github.com/natgeo-wong/JuliaEO2024_Nat


1/17/24

2

Aim

• The Julia community and ecosystem is relatively small
– We don’t have the wide, extensive community that Python has
– A lot of packages are therefore developed by individuals like myself

• Therefore, much of our development relies on the individual
– This is especially true for the Earth Sciences / Geosciences and Earth Observations
– If you need a specialized package, why not develop one yourself?

5

Aim

• However, to develop a package, you need to understand the basics of
– Julia environments and Package management
– Package development in Julia

6

Outline

• Understand and manage the package ecosystem in Julia

• Creating Packages in Julia: What do you need to know?
• Creating Packages in Julia: Using GeoRegions.jl as an Example

• Applications of GeoRegions.jl

• (If we have time) Creating Packages in Julia: Back to the Drawing Board!

7

Outline

• Understand and manage the package ecosystem in Julia
– Both for package development
– And for project management, using DrWatson.jl

• Creating Packages in Julia: What do you need to know?
– Developing packages 101: PkgTemplates.jl, CI, and some Testing
– How do you organize a package?
– Best-practice/performance tips

• Creating Packages in Julia: Using GeoRegions.jl as an Example
– The many iterations of GeoRegions.jl

8



1/17/24

3

Outline

• Applications of GeoRegions.jl
– The basic functionality of GeoRegions.jl: Define, select and extract data
– Using GeoRegions.jl in other Packages: What do you need to know?

9

THE JULIA PACKAGE ECOSYSTEM
how do I shot web? (i.e., how to install and uninstall stuff)

10

What is an Environment?
• A Julia environment defines and controls

– Packages used in the project
– Exact specs of package (#main, version, etc.)

• Defined using both Project.toml and 
Manifest.toml

• Every project you create should have a 
different environment.

– Why?

11

What is an Environment?
• Project.toml:

– contains package list
– is always necessary
– contains [compat] bounds of the packages
– More information can be found in Pkg.jl

12



1/17/24

4

What is an Environment?
• Project.toml:

– contains package list
– is always necessary
– contains [compat] bounds of the packages
– More information can be found in Pkg.jl

13

What is an Environment?
• Project.toml:

– contains package list
– is always necessary
– contains [compat] bounds of the packages
– More information can be found in Pkg.jl

• Manifest.toml:
– contains package and dependency information
– is not necessary upon startup, will be created

upon project/environment initialization
– is necessary an exact environment duplicate is 

required (e.g., for reproducibility purposes)

14

What is an Environment?
• You must always have a Project.toml

• A Manifest.toml can be created on-the-spot 
through precompilation of the environment

– GitHub has no Manifest.toml

15

What is an Environment?
• You must always have a Project.toml

• A Manifest.toml can be created on-the-spot 
through precompilation of the environment

– GitHub has no Manifest.toml
– After precompilation, Manifest.toml is created

16



1/17/24

5

Activity: Creating an Environment

• Now you try!

17

Activity: Creating an Environment

• Now you try!

1. Create a folder

18

Activity: Creating an Environment
• Now you try!

1. Create a folder
2. Run Julia in this folder (command: julia)

19

Activity: Creating an Environment
• Now you try!

1. Create a folder
2. Run Julia in this folder (command: julia)
3. Enter the package console (command: ])

20



1/17/24

6

Activity: Creating an Environment
• Now you try!

1. Create a folder
2. Run Julia in this folder (command: julia)
3. Enter the package console (command: ])
4. Activate the current environment

(command: activate .)

21

Activity: Creating an Environment
• Now you try!

1. Create a folder
2. Run Julia in this folder (command: julia)
3. Enter the package console (command: ])
4. Activate the current environment

(command: activate .)
5. Add a random package (e.g., StatsBase)

22

Activity: Creating an Environment

• Now you try!

1. Create a folder
2. Run Julia in this folder (command: julia)
3. Enter the package console (command: ])
4. Activate the current environment (command: activate .)
5. Add a random package (e.g., StatsBase)

• Your previously empty folder should now have both Project.toml and Manifest.toml

23

Activity: Creating an Environment
• Now you try!

1. Create a folder
2. Run Julia in this folder (command: julia)
3. Enter the package console (command: ])
4. Activate the current environment (command: 

activate .)
5. Add a random package (e.g., StatsBase)

• Your previously empty folder should now have 
both Project.toml and Manifest.toml

24



1/17/24

7

Activity: Precompiling an Environment
• Now you try!

1. Go to https://github.com/natgeo-
wong/2023GL104350 (this is my recent paper)

2. Clone the repository

25

Activity: Precompiling an Environment
• Now you try!

1. Go to https://github.com/natgeo-
wong/2023GL104350 (this is my recent paper)

2. Clone the repository
3. Open Julia and activate the environment

26

Activity: Precompiling an Environment
• Now you try!

1. Go to https://github.com/natgeo-
wong/2023GL104350 (this is my recent paper)

2. Clone the repository
3. Open Julia and activate the environment
4. Precompile the environment

27

Activity: Precompiling an Environment
• Now you try!

1. Go to https://github.com/natgeo-
wong/2023GL104350 (this is my recent paper)

2. Clone the repository
3. Open Julia and activate the environment
4. Precompile the environment
5. Update the environment

28

https://github.com/natgeo-wong/2023GL104350
https://github.com/natgeo-wong/2023GL104350
https://github.com/natgeo-wong/2023GL104350
https://github.com/natgeo-wong/2023GL104350
https://github.com/natgeo-wong/2023GL104350
https://github.com/natgeo-wong/2023GL104350
https://github.com/natgeo-wong/2023GL104350
https://github.com/natgeo-wong/2023GL104350


1/17/24

8

Activity: Precompiling an Environment
• Now you try!

1. Go to https://github.com/natgeo-
wong/2023GL104350 (this is my recent paper)

2. Clone the repository
3. Open Julia and activate the environment
4. Precompile the environment
5. Update the environment

29

Activity: Precompiling an Environment
• Now you try!

1. Go to https://github.com/natgeo-
wong/2023GL104350 (this is my recent paper)

2. Clone the repository
3. Open Julia and activate the environment
4. Precompile the environment
5. Update the environment
6. Compare the difference in Manifest using git 

30

Managing Environments in Package Creation

• PkgTemplates.jl (https://github.com/JuliaCI/PkgTemplates.jl)
– Can be used to easily create new Julia packages (we’ll get to this later)
– Will setup a Package Environment by creating both Project.toml and Manifest.toml
– By default, setups Git to track only the Project.toml, not the Manifest.toml

31

Managing Environments in Package Creation

• PkgTemplates.jl (https://github.com/JuliaCI/PkgTemplates.jl)
– Can be used to easily create new Julia packages (we’ll get to this later)
– Will setup a Package Environment by creating both Project.toml and Manifest.toml
– By default, setups Git to track only the Project.toml, not the Manifest.toml

• You generally don’t want to track the Manifest.toml of a Package
– Can anyone tell me why?

32

https://github.com/natgeo-wong/2023GL104350
https://github.com/natgeo-wong/2023GL104350
https://github.com/natgeo-wong/2023GL104350
https://github.com/natgeo-wong/2023GL104350
https://github.com/JuliaCI/PkgTemplates.jl
https://github.com/JuliaCI/PkgTemplates.jl


1/17/24

9

Managing Environments in Package Creation

• PkgTemplates.jl (https://github.com/JuliaCI/PkgTemplates.jl)
– Can be used to easily create new Julia packages (we’ll get to this later)
– Will setup a Package Environment by creating both Project.toml and Manifest.toml
– By default, setups Git to track only the Project.toml, not the Manifest.toml

• You generally don’t want to track the Manifest.toml of a Package
– Can anyone tell me why?
– A:

• [compat] requirements are already set in Project.toml
• You want to allow for flexibility in dependencies, as these dependencies are likely also used by other 

packages in the environment
• Manifest.toml will change very rapidly and will vary from device to device, not logical to track changes

33

Managing Environments for Personal Projects

• DrWatson.jl (https://github.com/JuliaDynamics/DrWatson.jl)
– More for creating your own self-contained projects (more on this later!)
– Will setup a Project Environment by creating both Project.toml and Manifest.toml
– By default, tracks both the Project.toml and Manifest.toml to ensure project reproducibility

34

Managing Environments for Personal Projects

• DrWatson.jl (https://github.com/JuliaDynamics/DrWatson.jl)
– More for creating your own self-contained projects (more on this later!)
– Will setup a Project Environment by creating both Project.toml and Manifest.toml
– By default, tracks both the Project.toml and Manifest.toml to ensure project reproducibility

• The scope of this lecture mostly focuses around Package creation, not project creation, but I 
though it would be good to distinguish the two

• Can anyone give me an example of when it is good to track/commit the Manifest.toml?

35

Managing Environments for Personal Projects
• Paper reproducibility!
• Example given just now (this is an actual 

repository for my paper)

• This project folder was created using 
DrWatson.jl

36

https://github.com/JuliaCI/PkgTemplates.jl
https://github.com/JuliaDynamics/DrWatson.jl
https://github.com/JuliaDynamics/DrWatson.jl


1/17/24

10

Activity: Why different Environments?

1. Use DrWatson.jl to create projects called “TestProjectNew” and “TestProjectOld”
Command: initialize_project(“TestProjectNew”)
Command: initialize_project(“TestProjectOld”)

2. In the “TestProjectNew” environment, install NASAPrecipitation v0.3
Command: add NASAPrecipitation@0.2

3. In the “TestProjectOld” environment, install NASAPrecipitation v0.1
Command: add NASAPrecipitation@0.1

• Using two different windows (loading julia in two different environments), compare and 
contrast NASAPrecipitation.jl

37

Activity: Why different Environments?

• Using two different windows (loading julia in two different environments), compare and 
contrast NASAPrecipitation.jl
– How do you call the different datasets?
– What is the difference in keywords?

• Different environments means you can load two different versions of the same package (in 
two separate windows)

38

Activity: Why different Environments?

• Using two different windows (loading julia in two different environments), compare and 
contrast NASAPrecipitation.jl
– How do you call the different datasets?
– What is the difference in keywords?

• Different environments means you can load two different versions of the same package

• Note: Packages you have already loaded will remain loaded as is. (i.e., if you switch 
environments, the package version you have already loaded remains)

39

BREAK! (5 Mins)

Any questions?

40



1/17/24

11

CREATING PACKAGES IN JULIA:
AN INTRODUCTION

An introduction to PkgTemplates.jl and other things you need to know

41

Package Creation with PkgTemplates.jl
• I usually use PkgTemplates.jl to create and 

develop new Julia packages

• PkgTemplates.jl will automatically create new 
packages inside ~/.julia/dev

– This is the dev folder, where all packages you 
develop are stored

– Note: You can also develop preexisting 
packages, just do:
]dev PkgName

42

Activity: Your First Package!

• Your turn! Let’s try developing your first package!

1. using PkgTemplates
2. tpl = Template()
3. tpl(“MyFirstPackage”)

43

Activity: Your First Package!

• Your turn! Let’s try developing your first package!

1. using PkgTemplates
2. tpl = Template()
3. tpl(“MyFirstPackage”)

44



1/17/24

12

Activity: Your First Package!

• Your turn! Let’s try developing your first package!

1. using PkgTemplates
2. tpl = Template()
3. tpl(“MyFirstPackage”)

45

Activity: Your First Package!
• Your turn! Let’s try developing your first 

package!

1. using PkgTemplates
2. tpl = Template()
3. tpl(“MyFirstPackage”)

46

What does a fully-formed Package look like?

47

Designing a Package

• What are you trying to accomplish when you are designing a package?

• Let’s go around the room. What would you create a package for in Earth Observation?
– Streamline workflows (e.g. downloading datasets)
– Documentation of personal projects

48



1/17/24

13

Designing a Package

• What are you trying to accomplish when you are designing a package?

• Let’s go around the room. What would you create a package for in Earth Observation?
– Data retrieval (from online servers, data repositories, etc.)
– Data analysis (timeseries analysis, temporal/spatial smoothing, daily/monthly means)
– Plotting and visualization of data

49

Designing a Package

• What are you trying to accomplish when you are designing a package?

• Let’s go around the room. What would you create a package for in Earth Observation?
– Data retrieval (from online servers, data repositories, etc.)
– Data analysis (timeseries analysis, temporal/spatial smoothing, daily/monthly means)
– Plotting and visualization of data

• What are these? They are actions that you would perform on a dataset
– A package must first focus on defining these datasets and their components
– How would you organize a package?

50

Designing a Package

Package

Components

Actions

• Land-Sea Mask
• Filesystem

• Dataset
• Variables
• Geographic Region

• Download
• Analysis
• Calculation

51

Designing a Package
• See filesystem structure on the right here

– Red = package filesystem
– Purple = package components
– Green = actionables / analysis

• You also have miscellaneous backend items
– Date2String functions
– Error checks
– Nan-means
– Real2Int functions

52



1/17/24

14

Designing a Package

• What does this mean?
– You need to be able to know what data is available/provided
– What is the package going to do for you?
– You may not want to retrieve everything (e.g., is all the information relevant to you?)

53

Designing a Package
• What does this mean?

– You need to be able to know what data is 
available/provided

– What is the package going to do for you?
– You may not want to retrieve everything (e.g., is 

all the information relevant to you?)

• E.g., the Global Precipitation Mission provides a 
lot of extra data

– e.g., IR Precipitation (Infrared Radar)
– Do you need these data? Or just the total 

precipitation values?

54

Multiple Datasets in a Package

• Packages may handle multiple datasets

55

Multiple Datasets in a Package
• Packages may handle multiple datasets

– Each of these datasets may have different 
properties

– Each of these datasets may have different 
performable actions

• How do we handle multiple datasets in a single 
package?

• Types + multiple dispatch methods!

56



1/17/24

15

Multiple Datasets in a Package
• Packages may handle multiple datasets

– Each of these datasets may have different 
properties

– Each of these datasets may have different 
performable actions

• How do we handle multiple datasets in a single 
package?

• Types + multiple dispatch methods!

57

Multiple Datasets in a Package

NASAPrecipitation.jl

IMERGDataset

IMERGHalfHourly IMERGDaily IMERGMonthly

TRMMDataset

TRMM3Hourly TRMMDaily TRMMMonthly

58

Multiple Datasets in a Package

59

Understanding your Package
• You (and your collaborators) are the designer of 

the package

• You know your package best. Does everyone 
else?

– A good Julia package is not only comprehensive 
and well-organized, but it must also be easy for 
people to understand

• Documentation! (made using Documenter.jl)
– PkgTemplates.jl will also set this up

60



1/17/24

16

Understanding your Package
• You (and your collaborators) are the designer of 

the package

• You know your package best. Does everyone 
else?

– A good Julia package is not only comprehensive 
and well-organized, but it must also be easy for 
people to understand

• Documentation! (made using Documenter.jl)
– PkgTemplates.jl will also set this up

61

TL,DR

• PkgTemplates.jl is a good tool for package developers in Julia

• Designing a package requires familiarity with the relevant datasets and the variables
• If you want to design a package, I recommend sketching out

– What your package is supposed to do
– What datasets and variables are in your package, how are they accessed?

• Multiple datasets can be handled using Julia types and multiple dispatch

• Documentation is also necessary if you want other people to use your package!
– Read through Documenter.jl for further details (I won’t be able to cover this in this lecture)

62

BREAK! (5 Mins)

Any questions?

63

CREATING PACKAGES IN JULIA: 
GEOREGIONS.JL AS AN EXAMPLE

The logic behind the development of GeoRegions.jl

64



1/17/24

17

What is GeoRegions.jl?
• Deals with gridded data (preferably rectilinear 

grids)

• Specify a Geographic Area:
– ID
– Name
– Parent Region (default is GLB)
– [N,S,E,W] coordinates or longitude/latitude 

vectors specifying a shape

• E.g.: specify region to download GPM IMERG 
data from OPeNDAP

65

GeoRegions.jl as an Example of a Julia Package

• We will get to learning how to use GeoRegions.jl later

• This section is focused on using GeoRegions.jl as an example of how to organize/structure 
a Julia Package
– Go back and compare against some of the concepts I mentioned just now for

e.g., Types, methods and multiple-dispatch, organization
– Show people the thought process required

66

GeoRegions.jl as an Example of a Julia Package

• Current version: v5.2.6
• In 2023, it was at v3

• Why did I bump it up 2 versions?

67

GeoRegions.jl as an Example of a Julia Package

• Current version: v5.2.6
• In 2023, it was at v3

• Why did I bump it up 2 versions?
– Julia follows SemVer
– If you publish your package as v1, any breaking changes require you to bump your version

68



1/17/24

18

GeoRegions.jl as an Example of a Julia Package

• Current version: v5.2.6
• In 2023, it was at v3

• Why did I bump it up 2 versions?
– Julia follows SemVer
– If you publish your package as v1, any breaking changes require you to bump your version
– It is better to wait and ensure that your package is stable before bumping to v1

(Note that most of the packages introduced during this workshop are v0.X)

69

GeoRegions.jl as an Example of a Julia Package
• Go to 

https://github.com/JuliaClimate/GeoRegions.jl
and download/clone the repository

• We will explore the package together

70

GeoRegions.jl as an Example of a Julia Package

Package

Components

Actions

•N/A (filesystem 
handling irrelevant)

•What are the 
supertypes available 
in GeoRegions.jl?

•What does the 
package do?

71

GeoRegions.jl as an Example of a Julia Package

Package

Components

Actions

• GeoRegion
• RegionGrid
• AbstractLandSea

• Data Extraction
• Is XX in YY?
• ETOPO

72

https://github.com/JuliaClimate/GeoRegions.jl


1/17/24

19

GeoRegions.jl as an Example of a Julia Package

• The master file of PackageName.jl is always found in src/PackageName.jl
• This is the starting point of every package

• In src/GeoRegions.jl, note the order of what I am doing:

73

GeoRegions.jl as an Example of a Julia Package

• The master file of PackageName.jl is always found in src/PackageName.jl
• This is the starting point of every package

• In src/GeoRegions.jl, note the order of what I am doing:

1. Load the package dependencies (information contained in Project.toml)
2. Export the package functions and Types defined in GeoRegions.jl
3. Define the most important Types in your Package (preferably at least the abstract types)
4. Define your functions (and include other files with functions)

• You can shift the order of (2/Export) around with the others

74

GeoRegions.jl as an Example of a Julia Package
1. Load the package dependencies (information 

contained in Project.toml)
– using is okay for most cases
– import is used when you want to reexport a 

function

75

GeoRegions.jl as an Example of a Julia Package
1. Load the package dependencies (information 

contained in Project.toml)

2. Export the package functions and Types
defined in GeoRegions.jl

– Order doesn’t matter
– I usually export the Types on top, then the 

functions below
– Exporting Types is important if you are creating 

parent packages

76



1/17/24

20

GeoRegions.jl as an Example of a Julia Package
1. Load the package dependencies (information 

contained in Project.toml)
2. Export the package functions and Types

defined in GeoRegions.jl

3. Define the most important Types in your 
Package (preferably at least the abstract 
types)
– A Type must be defined first before it can be 

used in a function

77

GeoRegions.jl as an Example of a Julia Package
1. Load the package dependencies (information 

contained in Project.toml)
2. Export the package functions and Types

defined in GeoRegions.jl
3. Define the most important Types in your 

Package (preferably at least the abstract 
types)

4. Define your functions (and include other files 
with functions)
– Order of function definition doesn’t matter
– Reminder: Relevant Types must be defined first

78

GeoRegions.jl as an Example of a Julia Package
1. Load the package dependencies (information 

contained in Project.toml)
2. Export the package functions and Types

defined in GeoRegions.jl
3. Define the most important Types in your 

Package (preferably at least the abstract 
types)

4. Define your functions (and include other files 
with functions)
– Order of function definition doesn’t matter
– Reminder: Relevant Types must be defined first

But was only defined 
later in the package …

This function was 
called first …

79

GeoRegions.jl as an Example of a Julia Package

• I learned all these practices by trial and error, committed to v1 too early
– This is why the version is large (at v5 currently)

• v1 à v2: shifted to using Types instead of Dictionaries
• v2 à v3: breaking changes for dataset downloading (would require people to redownload 

datasets all over again)
• v3 à v4: changed field names for RegionGrid Types (would break parent packages)
• v4 à v5: changed field names for GeoRegion Types (would break parent packages)

80



1/17/24

21

GeoRegions.jl as an Example of a Julia Package

• I learned all these practices by trial and error, committed to v1 too early
– This is why the version is large (at v5 currently)

• v1 à v2: shifted to using Types instead of calling Strings

81

GeoRegions.jl as an Example of a Julia Package

• I learned all these practices by trial and error, committed to v1 too early
– This is why the version is large (at v5 currently)

• v1 à v2: shifted to using Types instead of calling Strings
– GeoRegion information was loaded and stored
– No need to keep calling functions again and again

82

GeoRegions.jl as an Example of a Julia Package

• I learned all these practices by trial and error, committed to v1 too early
– This is why the version is large (at v5 currently)

• v3 à v4: changed field names for RegionGrid Types (would break parent packages)
• v4 à v5: changed field names for GeoRegion Types (would break parent packages)

83

GeoRegions.jl as an Example of a Julia Package

• I learned all these practices by trial and error, committed to v1 too early
– This is why the version is large (at v5 currently)

• v3 à v4: changed field names for RegionGrid Types (would break parent packages)
• v4 à v5: changed field names for GeoRegion Types (would break parent packages)

• Why did I do this?

84



1/17/24

22

GeoRegions.jl as an Example of a Julia Package

• I learned all these practices by trial and error, committed to v1 too early
– This is why the version is large (at v5 currently)

• v3 à v4: changed field names for RegionGrid Types (would break parent packages)
• v4 à v5: changed field names for GeoRegion Types (would break parent packages)

• Why did I do this?
– A: e.g. I felt that using “ID” was more intuitive than “regID”

85

GeoRegions.jl as an Example of a Julia Package

• I learned all these practices by trial and error, committed to v1 too early
– This is why the version is large (at v5 currently)

• v3 à v4: changed field names for RegionGrid Types (would break parent packages)
• v4 à v5: changed field names for GeoRegion Types (would break parent packages)

• Why did I do this?
– A: e.g. I felt that using “ID” was more intuitive than “regID”
– Simpler is always better

86

GeoRegions.jl as an Example of a Julia Package

What is this 
section in green?

87

GeoRegions.jl as an Example of a Julia Package

• It is important to provide documentation for your functions

• Good documentation also provides examples and use-cases, not only API functionality

88



1/17/24

23

GeoRegions.jl as an Example of a Julia Package

89

GeoRegions.jl as an Example of a Julia Package
• You can export functions, and more importantly, 

types, for use in other packages

• e.g.,
– GeoRegions.jl exports the LandSeaFlat type

90

GeoRegions.jl as an Example of a Julia Package
• You can export functions, and more importantly, 

types, for use in other packages

• e.g.,
– GeoRegions.jl exports the LandSeaFlat type
– NASAPrecipitation uses this type

91

GeoRegions.jl as an Example of a Julia Package
• You can export functions, and more importantly, 

types, for use in other packages

• e.g.,
– GeoRegions.jl exports the LandSeaFlat type
– NASAPrecipitation.jl creates a subtype of this 

GeoRegions type

92



1/17/24

24

GeoRegions.jl as an Example of a Julia Package
• You can export functions, and more importantly, 

types, for use in other packages

• e.g.,
– GeoRegions.jl exports the LandSeaFlat type
– NASAPrecipitation.jl creates a subtype of this 

GeoRegions type

• This is how you

93

BREAK! (5 Mins)

Any questions?

94

USING GEOREGIONS.JL
How do I use GeoRegions.jl in Earth Observation work?

95

Breakdown of Today’s Tutorial

• Using GeoRegions.jl
– Defining your own GeoRegion
– Properties of a GeoRegion

• How do you use GeoRegions?
– Data Extraction for a particular region (defined by a GeoRegion)
– Is a point/region within a GeoRegion of interest?
– Land-Sea Mask Datasets (retrieving and manipulating ETOPO data)

• Using GeoRegions.jl in other packages 

96



1/17/24

25

Breakdown of Today’s Tutorial
• For this part, we will be using Pluto.jl

notebooks! (https://plutojl.org)
– Good for step-by-step story format presentation
– Interactive and in-real-time

• I like using Pluto.jl notebooks to do data 
visualization and presentation

97

Breakdown of Today’s Tutorial

• Today’s notebooks are not a exhaustive tutorial of the functionalities of GeoRegions.jl
– For a more comprehensive breakdown, it is always best to refer to the documentation

• Today’s introduction to GeoRegions.jl is more to reinforce concepts taught earlier, i.e.,
– how do you want to design a package and what is it supposed to do?
– using Types and multiple dispatch
– exporting package functionality for future use (e.g., how GeoRegions.jl Types can be exported for 

use in parent packages such as NASAPrecipitation.jl)

98

Breakdown of Today’s Tutorial
• Go to https://github.com/natgeo-

wong/JuliaEO2024_Nat

• Clone the repository there

99

Opening the notebooks

• First, you need to setup the environment?

• Recall, what do you need to do?
• Precompile the environment!

100

https://plutojl.org/
https://github.com/natgeo-wong/JuliaEO2024_Nat
https://github.com/natgeo-wong/JuliaEO2024_Nat


1/17/24

26

Opening the notebooks
• Go into the notebooks folder

1. Run Julia
2. Loading the Pluto.jl package (using Pluto)
3. Open a Pluto notebook session (Pluto.run())

101

Opening the notebooks

• Go into the notebooks folder

1. Run Julia
2. Loading the Pluto.jl package (using Pluto)
3. Open a Pluto notebook session (Pluto.run())

• From there, you can open Pluto notebooks

102

Opening the notebooks

• Go into the notebooks folder

1. Run Julia
2. Loading the Pluto.jl package (using Pluto)
3. Open a Pluto notebook session (Pluto.run())

• From there, you can open Pluto notebooks
– We will go in order from 01 to 04

103

Notebooks Time!

We’ll be using notebooks for this part of the lecture

104



1/17/24

27

CREATING PACKAGES IN JULIA:
A SUMMARY

105

Why do you want to create a package?

Package

Components

Actions

• Land-Sea Mask
• Filesystem

• Dataset
• Variables
• Geographic Region

• Download
• Analysis
• Calculation

106

Why do you want to create a Package?

• A key part of creating a package is understanding Julia environments
– Understand the basics of environment creation, activation, compilation and updating
– Understand the purpose of a Project.toml and a Manifest.toml

• Each package has its own environment

• Every project you have should also have its own environment
– Not recommended to use the master environment unless it’s for basic testing stuff
– Different projects can have different package versions for different use-cases

107

Why do you want to create a Package?

• What are you trying to accomplish when you are designing a package? 
– Data retrieval (from online servers, data repositories, etc.)
– Data analysis (timeseries analysis, temporal/spatial smoothing, daily/monthly means)
– Plotting and visualization of data

• Design your package such that it is easy for people to use and understand
– An understanding of types and multiple dispatch helps a lot in organizing your package
– Clear documentation also helps a lot

108



1/17/24

28

The End

Thanks for listening!

109


