United Nations Conference on Trade and Development

13th Multi-Year Expert Meeting on Commodities and Development

10-12 October 2022, Geneva

Bamboo as alternate structural material

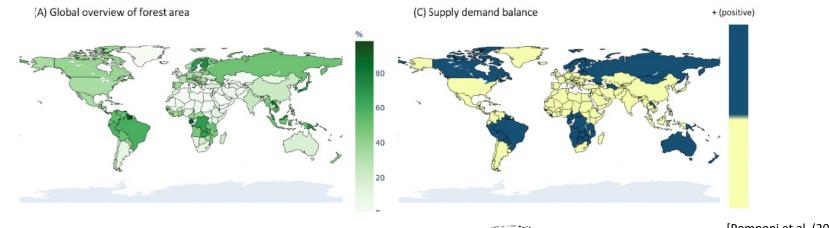
By

Luisa Molari, Associate Professor, Department of Civil, Chemical, Environmental and Material Engineering, University of Bologna, Italy

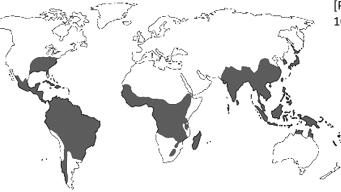
The views expressed are those of the author and do not necessarily reflect the views of UNCTAD.

Multi-year Expert Meeting on Commodities and Development, thirteenth session

ALMA MATER STUDIORUM Università di Bologna


12 October 2022 Palais des Nations, Geneva, Switzerland

Bamboo as alternate structural material


Luisa Molari

DICAM – Department of Civil, Chemical, Environmental and Material Engineering The building and construction sector is responsible of almost 40% of CO_2 emissions in Europe Construction materials made with biomass can invert this Bio-based construction materials have been largely overlooked with the exception of **timber**.

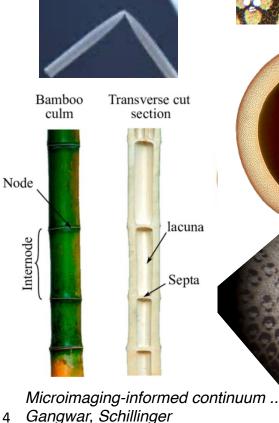
Can timber be used to turn the global building stock into a carbon sink?

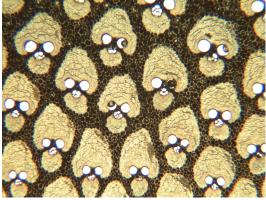
Bamboo has the potential to meet the increasing demands of the building stock

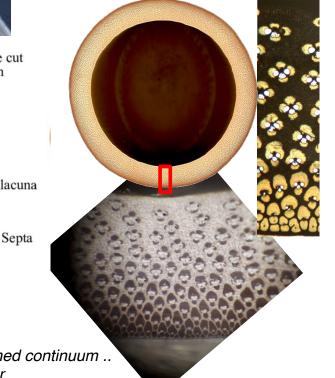
[Pomponi et al. (2020), 10.17632/rtfmgzp357.1]

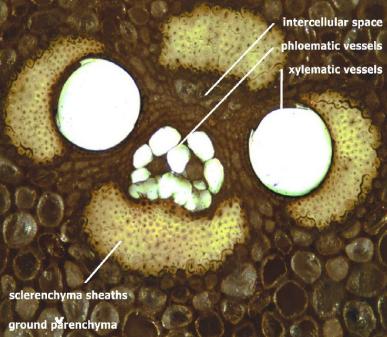
Vogel, Gardner. EEOB lowaStateUniversity

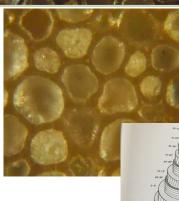
What are the differences between wood and bamboo?

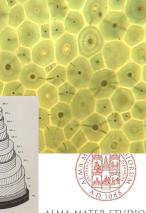

	Wood Bamboo	
Family	wood	grass
Time to grow	30-50 years	3-5 years
Regeneration	By plantation	Grow itself back
Fibers	2 directions	1 direction
Stem	Solid cylinder	Hollow cylinder

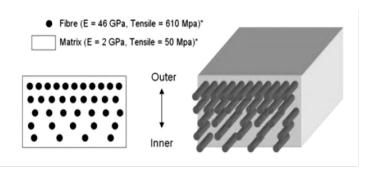

ALMA MATER STUDIORUM Università di Bologna


What are the challanges posed by geometry and microscopic features?

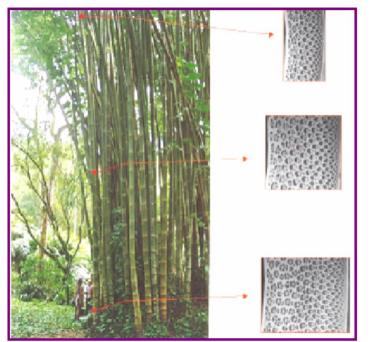

- Hollow cylinder
- Diaphragms
- Tapered along the axis




4


ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

What are the challanges posed by bamboo microscopic features?

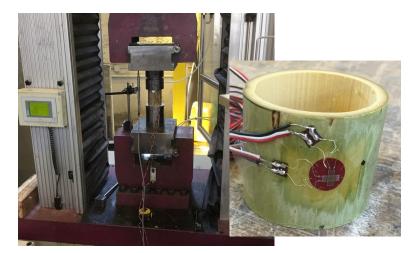

Ba	mboo is a composite material:	PROPERTIES	MATRIX	FIBRE
1)	Vessels 10%	Tensile strength (MPa)	50	610
2)	Parenchyma 50%	Young modulud (GPa)	2	46
3)	Sclerenchyma 40%	Density (Kg/cm³)	0,67	1,16

Functionally graded in radial but also in the longitudinal direction

Deeply orthotropic behaviour

Amada et al. (1997)

ALMA MATER STUDIORUM Università di Bologna


Ghawami et al. (2003)

What about mechanical performance?

Test in two directions Parallel to the fibers

and orthogonal to the fibers

ALMA MATER STUDIORUM Università di Bologna

What about mechanical performance?

Compression strength parallel to the fibers

	<i>f_{c,0}</i> [Mpa]		$E_{c,0}[0]$	GPa]	w [%]		
	Mean	std	mean	std	mean	std	
BAM	80,43	6,75	20,34	5,02	9,60	0,79	
EDU	68,69	8,06	14,04	3,64	10,84	0,30	
IRI	80,12	5,00	21,89	3,99	10,38	0,39	
VIO	59,50	7,26	16,27	5,71	10,15	1,50	
VIV	64,35	2,80	17,37	2,61	10,11	0,23	
VIR	71,4	5,70	18,11	7,87	12,03	-	

Guadua	f c,0	Е с,0
	56-68 MPa	17,8- 20,0 GPa

	f _{t,}	D [Mpa]	E _{t,0} [GPa]		w [%]	
	mean	std	mean	mean std		std
BAM	220,28	41,91	21,80	2,60	9,59	0,78
EDU	193,51	42,73	15,19	2,92	9,09	0,30
IRI	229,38	34,92	18,22	3,12	9,11	0,39
VIO	148,91	31,40	18,17	4,63	9,04	0,23
VIV	188,84	37,62	14,90	4,75	8,94	1,5
VIR	214,99	33,86	16,95	2,35	10,37	0,52

Tension strength parallel to the fibers

Molari, Mentrasti, Fabiani Struct ures. 24: 59-72. 2020.

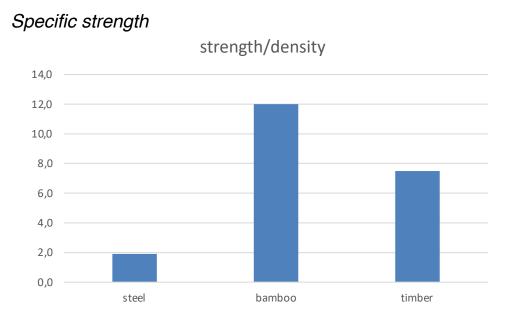
Guadua		E t,0 17,6 20.2 GPa
--------	--	------------------------

Phyllostachys Bambusoides, Edulis, Iridescens, Violacescens, Vivax, Viridiglaucecsens

Tension strength orthogonal to the fibers

	Tensile strength (MPa)						
Species	Inner	Outer					
BAM	17,6 (0,30)	30,5 (0,23)					
EDU	39,9 (0,16)	14,5 (0,16)					
IRI	16,9 (0,27)	23,2 (0,12)					
VIO	24,1 (0,72)	22,6 (0,27)					
GA	9,9 (0,24)	16,5 (0,24)					

<u>Molari, Garcia.</u> <u>Journal of</u> <u>Building</u> <u>Engineering, 33,</u>


101557, 2021.

ALMA MATER STUDIORUM Università di Bologna

Comparison with other materials

Merit indices

Energy in [MJ] for the production of 1 m³ per unit strength [MPa]

Material	MJ/m^3 Mpa
Steel	1500
Wood	80
Bamboo	30

[K. Ghavami]

Structural applications

Culms

Split

Flakes and fiber

Engineered

Culms

Culms

Arch. Mauricio Cardenas https://www.studiocardenas.it

Architect Yasmeen Lari and the Heritage Foundation of Pakistan. The shelters.

https://edition.cnn.com/style/article/pakistan-floods-bamboo-shelters-climate-intlhnk/index.html?fbclid=IwAR2cA5SrK6YLrkE5BY6iC3jN4M33M5z9npdYt8ZV1FrGi0sF-ETviu5L7CA

Arch. Simon Velez https://www.studiocardenas.it

Culms

Culms

Bundles of culms

Arch. Mauricio Cardenas INBAR PAVILLON https://www.studiocardenas.it

Canyaviva Italia https://www.facebook.com/canyavivaitalia/

Split

Planed

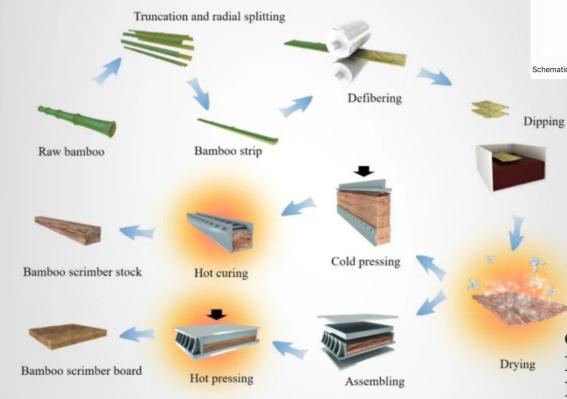
Shaft at 8

https://www.madeinbamboo.com/

https://inhabitat.com/interview-ibuku-founder-elora-hardy-on-creatingamazing-sustainable-buildings-with-bamboo/sharma-springs-ibuku-12/studiorum UNIVERSITA di BOLOGNA

Engineered

Split



ALMA MATER STUDIORUM Università di Bologna

Scrimber bamboo

Process flow diagram of bamboo scrimber

Development of bamboo scrimber: a literature review

•<u>Yuxiang Huang</u>, <u>Yaohui Ji</u> & <u>Wenji Yu</u> <u>Journal of Wood Science</u> **volume 65**, Article number: 25 (2019)


Schematic diagram of the novel fluffer machine developed by Chinese Academy of Forestry

Dipping is the key process, impregnation of phenolic resin (in vacuum or at normal pressure) designed according to the requirements of bamboo scrimber's performance and use.

density from 1.02 to 1.3 g/cm³, MOR from 271 to 398 MPa MOE from 26.4 to 32.3 GPa [Yu Y, et al. 2018]. The water absorption decreased from 43.0 to 5.01% [Xie J, et al. 2016],

Laminated bamboo

Table 2

Material properties for structural bamboo and comparable bleached bamboo and timber products.

		Density Comp		Density Compression		Tension Shear		Flexural		E _b I
		hokg/m ³	f _{c∥} MPa	f _{c⊥} MPa	$f_{t\parallel}$ MPa	$f_{t\perp}$ MPa	$ au_{\parallel}$ MPa	f _ь MPa	E _b GPa	kN-m ²
Bleached bamboo ^a	x	644	55	a	124	3	14	76-79	10.2-10.5	79-89
	COV	а	0.09	0.15	0.15	0.14	0.09	0.09-0.07	0.08-0.06	
Semi-caramelised ^a	x	673	60	22	116	3	17	79	10.4	81
	COV	0.01	0.04	0.07	0.20	0.11	0.03	0.12	0.08	
Caramelised bamboo ^b	x	686	77	22	90	2	16	77-83	10.8-12.9	82-103
	COV	0.05	0.05	0.07	0.26	0.13	0.05	0.06-0.08	0.05-0.06	
Raw bamboo Phyllostachys pubescens ^{c,d}	x	666	53	-	153	-	16	135	9	
Sitka spruce ^{e,f}	x	383	36	-	59	-	9	67	8	
Douglas-fir LVL ^{g,h}	\bar{x}	520	57	-	49	-	11	68	13	

^a Present study.

^b Sharma et al. (2015) [24].

^c Ghavami and Marinho [25].

^d de Vos [26].

^e Lavers [27].

^f Kretschmann [28]. ^g Kretschmann et al. [29].

^h Clouston et al. [30].

Effect of processing methods on the mechanical properties of engineered Bamboo, Bhavna Sharma, Ana Gatóo, Michael H. Ramage Construction and Building Materials 83 (2015) 95–101

What is limiting the use of bamboo? What can be done?

Culms

Issues: durability and strength, variability in dimension, connections, cultural feelings, lack of standards

Advantages: rapidity in construction, sustainability

International Standards:

ISO 19624 Bamboo structures — Grading of bamboo culms Basic principles and procedures

ISO 22156 Bamboo – Structural Design (milestone)

Engineered

Issues: sustainability (adhesives), industrialization of the process, standardization Advantages: durability, strength, standardization, dimensions

International Standards:

Published:

<u>ISO 23478:2022</u> Bamboo structures — Engineered bamboo products — Test methods for determination of physical and mechanical properties

Under developments:

ISO/DIS 6128 Laminated products made of bamboo strips for indoor furniture purposes (Draft International Standard)

<u>ISO/WD 7567</u> Bamboo Structures — Glued laminated bamboo --Product specification (working draft)

Bamboo flake and fibers

Bamboo Based Biocomposites Material, Design and Applications S. Siti Suhaily, et al.

Biocomposite: Mytril with Hemp and bamboo (without chemical additives 100% bio product)

Conclusions

Bamboo is a sustainable material with good mechanical properties which can play a crucial role in the green transition of the construction sector

Row bamboo material can have great applications but the engineered bamboo can greatly spread the applications

Standards need to be enlarged to cover all the aspects of the constructions. There is the path already designed by timber.

There are new completely green perspectives also in panels made by bamboo fibers.

ALMA MATER STUDIORUM Università di Bologna

Luisa Molari

DICAM

luisa.molari@unibo.it

www.unibo.it