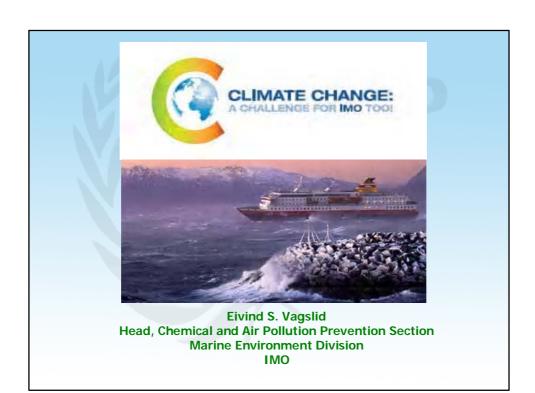
Multi-year Expert Meeting On Transport and Trade Facilitation:

Maritime Transport and the Climate Change Challenge


16-18 February 2009

Climate Change: A Challenge for IMO Too!

by

Mr. Eivind S. Vagslid
Head, Chemical and Air Pollution Prevention Section
Marine Environment Division
IMO

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the view of the United Nations.

The IMO Convention

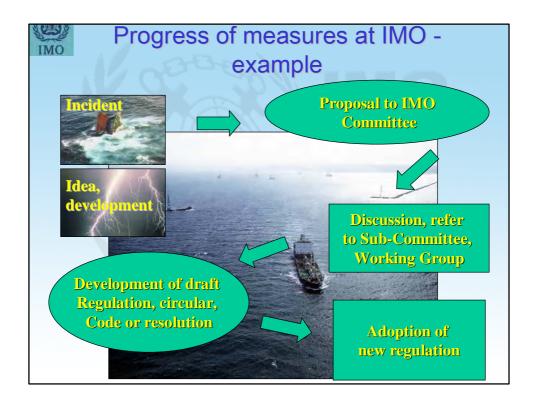
- Adopted Geneva 1948
- Entered into force 1958
- First IMO meeting in London 1959

168 Member States representing 98.81 % of the world tonnage

Gives the legal basis for, and the purpose of IMO, describes membership, the functions to different bodies, the method of work, rules for voting, the functions of the SG and the Secretariat, their functions, finances, location, relation to other organisations etc

Early international treaties

- Mid 19th Century
- 1863 rules of the road – adopted by more than 30 countries



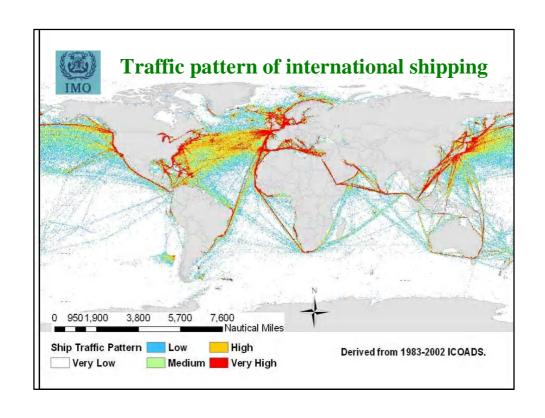
Marine Environment Protection Committee MEPC

MEPC that consists of all members, shall consider any matter within IMO's scope concerned with the prevention and control of marine pollution from ships and in particular:

- •Perform functions such as adoption and amendments of regulations, in accordance with the conventions under its competence
- •Consider measures to facilitate enforcement of the same conventions
- •Provide scientific, technical and any other practical information for dissemination to states, in particular to developing countries
- •Promote co-operation with regional organizations
- •Consider and take action with respect to any other matters which would contribute to the prevention and control of marine pollution
- •Meet at least once a year (three sessions bi-annually)

Bunkers

Ship emissions one of the last major ship pollutants to be regulated


Work started at IMO in the 1980's

Annex VI adopted in 1997, in force in
May 2005, revised 2005 - 2008

- •Prohibits ODS in line with the Montreal Protocol
- •Regulates exhaust gas emissions: NOx & SOx and cargo vapours (VOC)
- Greenhouse gases not covered

UNFCCC debate on allocation of ship emissions 1992 - 1997 1 No allocation 2 Proportional to national emissions 3 Fuel sales 4 Nationality of company 5 Flag 6 Route of vessel 7 Route of cargo 8 Country of origin of cargo 9 Emissions in territorial waters

	Number of ships	GT	DW
Annex I flag States	20,872 (33.42%)	209,015,681 (26.08%)	263,820,104 (22.82%)
Non-Annex I flag States	41,119 (66.58%)	593,330,359 (73.92%)	892,384,249 (77.18%)
Total	61,862	801,346,040	1,156,204,353
12%7	4%	37%	General cargos Tankers Buk carriers Container ships Passenger ships

Flag States and ownership of the world fleet 2007

Largest flag States

Flag State	1,000 DWT	
Panama	232,148	
Liberia	105,227	
Bahamas	55,238	
Greece	55,145	
Marshall Islands	54,644	
Hong Kong, China	54,341	
Singapore	51,043	
Malta	40,201	
China	34,924	
Cyprus	29,627	

Largest ship-owning countries

Country of owner	1,000 DWT
Greece	170,181
Japan	147,507
Germany	85,043
China	70,390
Norway	48,697
United States	48,261
Hong Kong, China	45,053
Republic of Korea	32,287
United Kingdom	26,757
Singapore	25,723

Source: UNCTAD, 2007.

IMO's Work on Reduction of GHG from Ships

Resolution A.719(17) adopted in 1991

Recognized the urgent necessity of establishing a policy on the prevention of air pollution from ships, leading to the adoption of Annex VI to MARPOL

Air Pollution Conference in September 1997

Resolution 8 on "CO2 emissions from ships", invites IMO to:

- co-operate with UNFCCC
- undertake a study on GHG emission
- · consider feasible GHG reduction stra

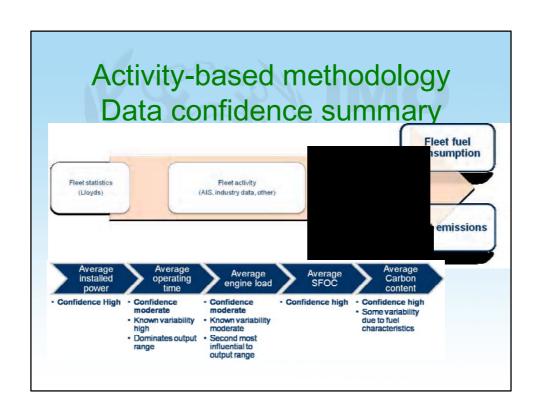
2000 IMO GHG study Summary of conclusions Significant potential for reduction from operational measures - Implementation of some operational measures will require participation from others than shipowners Technical measures easier to implement through regulations - Implementing technical measures through new vessel more feasible than retrofitting existing ships - Measures related to hull, engines and propeller are general measures for energy savings Limited potential to prevent growth in the total emissions from ships if the increase in demand for sea-transport continues Shipping is a significant contributor in the development of environmental sustainable transport

Reduction of GHG from Ships

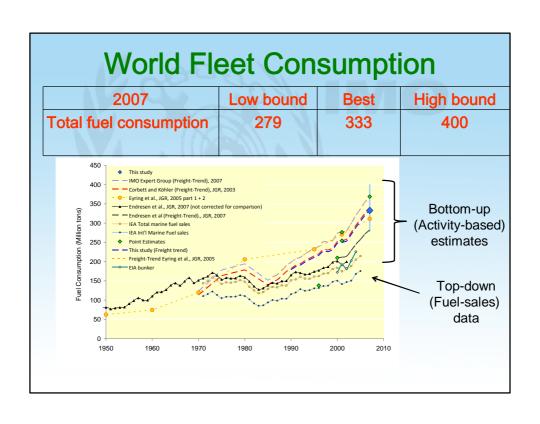
<u>MEPC 53</u> (July 2005) approved IMO's "Interim Guidelines for Voluntary Ship CO2 Emission Indexing for Use in Trials" (MEPC/Circ.471)

<u>MEPC 55</u> (October 2006) approved a "Work plan to identify and develop the mechanisms needed to achieve the limitation or reduction of CO2 emissions from international shipping", and agreed to update the 2000 IMO GHG Study

MEPC 56 (July 2007) adopted ToR for the updated GHG Study, established a Correspondence Group instructed to compile and consider different approaches on technical, operational and market based reduction measures

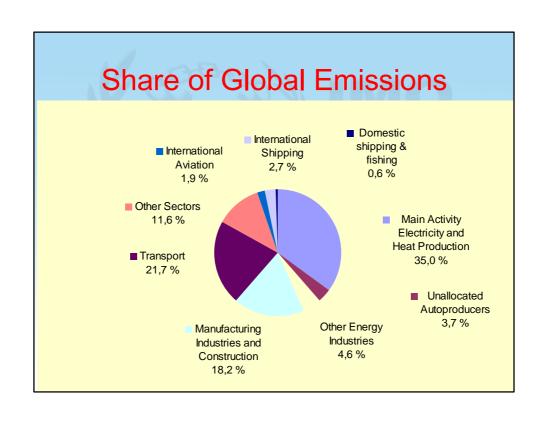

Update of the 2000 IMO GHG study

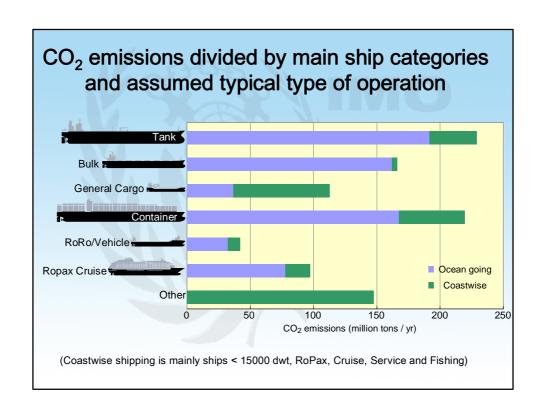
Phase 1, covering a CO2 emission inventory and future emission scenarios, reported to IMO in August 2008 and considered by MEPC 58 in October.

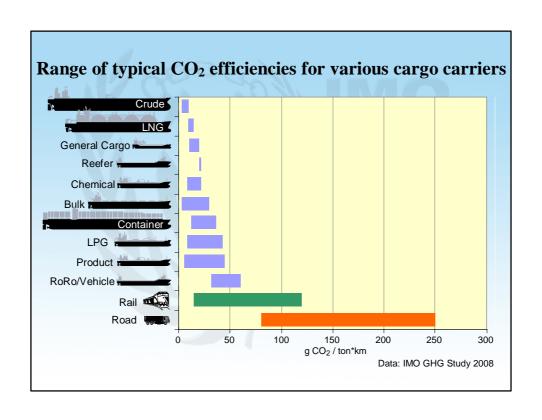


Phase 2, also covering greenhouse gases other than CO2 and other relevant substances in accordance with the methodology adopted by UNFCCC, as well as the identification and consideration of future reduction potentials by technical, operational and market-based measures, will be submitted to IMO by February 2009 for consideration by MEPC 59.

2	CE Delft	The Netherlands	Dr. Jasper Faber
	Dalian Maritime University	China	Professor Wu Wanqing
V DLR	Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR),	Germany	Dr. Veronika Eyring
JÅ DNV	DNV	Norway	Alvar Mjelde Dr. Øyvind Endresen
EE RA	Energy and Environmental Research Associates (EERA)	USA	Dr. James Corbett Dr. James Winebrake
arplay	Lloyd's Register-Fairplay Research,	Sweden	Christopher Pålsson
Manchester Metropolitan University	Manchester Metropolitan University	UK	Professor David S. Lee
MARINTEK (§ SINTEF	MARINTEK	Norway	Dr. Øyvind Buhaug Haakon Lindstad
©	Mokpo National Maritime University (MNMU),	Korea	Professor DonChool Lee
	National Maritime Research Institute (NMRI)	Japan	Koichi Yoshida
OPRF	Ocean Policy Research Foundation (OPRF)	Japan	Shinichi Hanayama


Activity-based 2007 CO ₂ emissions for shipping			
	Low	Consens	High
TA THE	bound	us	bound
Million metric tonnes	300	estimate	
Total fuel consumption	279	333	400
Total ship CO ₂ emissions ¹	854	1019	1224
- Oceangoing	474	593	681
- Coastwise	240	275	357
- Other	140	150	186
All non-military vessels larger than 100 GT			




2007 CO₂ emissions for <u>international</u> <u>shipping</u> in million tonnes CO₂

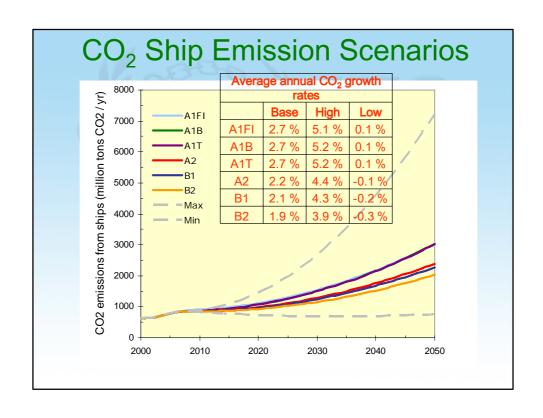
	Low bound	Consensus	High bound
Total shipping emissions (activity based)	854	1019	1224
Total less fishing (activity based)	796	954	1150
IEA domestic shipping (statistical data)	111	111	111
International shipping (hybrid estimate)	685	843	1039

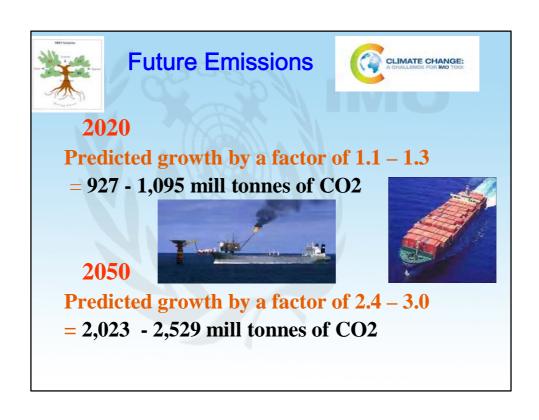
All non-military vessels larger than 100 GT

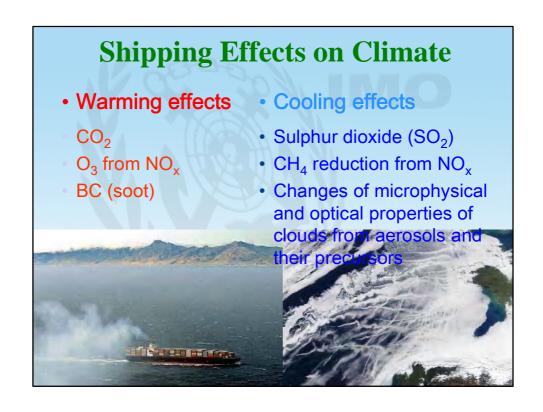
Future Emissions - Scenario overview

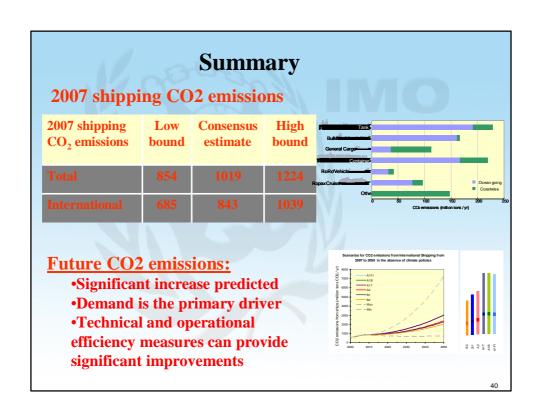
- Based on IPCC SRES storylines
- Phase I assumes no explicit regulation on GHG emissions affecting ships

 Changes in economic, technology, and non-GHG regulatory mandates will affect emissions


Key Driving Variables			
Category	Variable	Related Elements	
Economy	Shipping transport demand (tonne-miles/year)	Population, global and regional economic growth, modal shifts, sectoral demand shifts.	
Transport efficiency	Transport efficiency (MJ/tonne-mile) – depends on fleet <i>composition</i> , ship <i>technology</i> and <i>operation</i>	Ship design, propulsion advancements, vessel speed, regulation aimed at achieving other objectives but that have a GHG emissions consequence.	
Energy	Shipping fuel carbon fraction (gC/MJ fuel energy)	Cost and availability of fuels (e.g., use of residual fuel, distillates, LNG, biofuels, or	


Different values applied to three categories of ships:


•Container ships (all sizes).


•Coastwise shipping - Ships used in regional (short sea) shipping;

•Ocean-going shipping - Larger ships suitable for intercontinental trade; and,

