

Basics of hydrogen economy

UNCTAD-DSI workshop on technology assessment in South Africa

Hydrogen value chain

The role of renewable energy in the energy transition, accordingly to IRENA

WORLD ENERGY

OUTLOOK

.5°C PATHWA

TRANSITIONS

SSIRENA

Hydrogen present and future

Hydrogen demand, 2020

Hydrogen use in 2050 - WETO

Hydrogen policies at a global level by segment of the value chain (2019)

Selected colour-code typology of hydrogen production

Note: a) $CO_{2-eq}/kg = carbon dioxide equivalent per kilogramme; b)$ For grey hydrogen, 2 kg CO_{2-eq}/kg assumed for methane leakage from the steam methane reforming process. c) Emissions for blue hydrogen assume a range of 98% and 68% carbon capture rate and 0.2% and 1.5% of methane leakage.

COIRENA

Geopolitics of the Energy Transformation The Hydrogen Factor

Technological readiness of grey and blue hydrogen technologies

Renewable hydrogen production pathways and current levels of maturity

Applied research / Prototype / Demonstration / Commercial

Water electrolysis technologies

		Alkaline	PEM	SOEC	AEM
	Development status	Commercial	Commercial	Demonstration	Under research
Operating conditions	Temperature (°C)	70-90	50-80	700-850	40-60
	Pressure (bar)	~30	<70	1	<35
Cost parameters	CAPEX (system) (USD/kW)	600	1000	> 2 000	
	Lifetime (hours)	50000	60 000	20 000	5000
	Efficiency (kWh/kg)	50-78	50-83	40-50	40-69
Flexibility	Load range	15-100%	0-160%	30-125%	5-100%
	Start-up	1-10 min	1 sec-5 min		
	Ramp up/down	0.2-20% per second	100% per second		
	Shutdown	1-10 minutes	Seconds		

Global OEM capacity (2025)

nel•		/ 550 (10,000)	AWE	PEM		AEM	
Cockeril		350 (8,000)	AWE				
O ITM POWER	1,000 (5,000)			PEM			
20. 700	1,000 (5,000)		AWE				
LONG	500 (5,000)		AWE				*2
SIEMENS BRIEFGY	250 (3,000)			PEM			_
	500 (2,000)			PEM			
Plug	500 (1,500)		PEM				🏝 💓 🔚
McPhy	300 (1,300)		AWE				
HYDROGENICS	150 (1,250)		AWE	PEM	SOE		<u>s.</u>
elogen	160 (1.160)			PEM			
Bloomenergy-	50 (1,000)				SOE		123
4	(1,000)			PEM	SOE		
****	50 (1,000)			PEM			-
Hydrogen pro	300 (1000)		AWE				
💧 sunfire	40 (500)		AWE		SOE		•
TOPSOE	50 (500)				SOE		+
H and a	75 (400)		AWE				
🗊 Enapter	3 (283)					AEM	
C PHa	200		AWE				•2
HHZE	(100)		AWE			AEM	_
Total		6,028 (49,193)					
	2022 (2025)	11 11					

Source: Roland Berger, Quarterly H2 and Fuel Cell Market Radar MENA (2022)

Hydrogen production cost

Hydrogen production cost depending on electrolyser system cost, electricity price and operating hour

Note: GJ = gigajoule. Efficiency = 65% (lower heating value). Fixed operational cost = 3% of the capital costs. Lifetime = 20 years. Interest rate = 8.0%. Fossil fuel range: grey hydrogen, considering fuel costs of USD 1.9–5.5/GJ for coal and fossil gas.

Green hydrogen policy priority

Hydrogen as a complement to alternative ways to decarbonise end uses

		(\$ \$	(† †)	Alla	
HEATING	 Solar water heaters, direct geothermal use, biomass (low- grade heating) 	Heat pumps	 Retrofit of buildings Technological advancement 	 High-grade heating 	
	 Solar drying, biomass (productive uses) 	 Electric industrial application (e.g. arc furnaces) 	 Use of best available technologies 	 Steelmaking refineries Chemical industry 	
	Biofuels	 Battery electric vehicles 	 Performance standards Travel avoidance Engine design 	• FCEVs	
SHIPPING	 Biofuels Wind energy 	 Short-distance shipping 	 Ship design Operation optimisation Travel avoidance 	 Green ammonia Methanol 	
	Biojet fuels	 Short-distance aviation 	 Plane design Travel avoidance 	 Hydrogen and synthetic fuels for aviation 	

Volumetric energy density of various solutions to transport hydrogen

STREED EXPERIMENTAL A LINE POPOLOV MARKE

Hydrogen transport cost based on distance and volume

15

SLOBAL HYDROGEN TRADE TO MEET THE 1.5 YO CLIMATE SCAL

International Renewable Energy Agency

	Gaseous state					Solid state		
	Salt caverns	Depleted gas fields	Rock caverns	Pressurized containers	Liquid hydrogen	Ammonia	LOHCs	Metal hydrides
Volume	Large	Large	Medium	Small	Medium	Large	Large	Small
Period (max)	Months	Season	Months	Daily	Weeks	Months	Months	days
Benchmark LCOS (\$/kg)	\$0.23	\$1.90	\$0.71	\$0.19	\$4.57	\$2.83	\$4.50	Not evaluated
Possible future LCOS	\$0.11	\$1.07	\$0.23	\$0.17	\$0.95	\$0.87	\$1.86	Not evaluated
Geographical availability	Limited	Limited	Limited	Not limited	Not limited	Not limited	Not limited	Not limited

Source: BNEF (2020)

Underground storage geographical issue

World map of salt basins

Most cost-effective hydrogen transport pathway by 2050 International Renewable Energy Agence

Project size (MtH₂/yr)

Solid lines are the base case. Pipelines are attractive for short distances, liquid hydrogen has a niche role and ammonia shipping is the most attractive for most combinations

Dotted lines are for regions that have an existing network that can be repurposed to hydrogen, expanding significantly the area where pipelines are attractive

Dashed lines represent a case where innovation is slower and all the costs are higher. In this instance, LOHC can be attractive for smaller projects

Se ROA

MEETTHE 15 C OLMATE GOM

Technical potential for producing green hydrogen under USD 1.5/kg by 2050, in EJ

An expanding network of hydrogen trade routes, plans and agreements

Considerations on trade

- In IRENA's 1.5°C scenario, 25% of the total global hydrogen demand (equivalent to about 150 Mt of hydrogen per year) could be satisfied through international trade;
- pipeline-enabled trade would be concentrated in Europe (85%) and Latin America;
- countries that have goodquality resources and low WACC would become the largest green hydrogen exporters

