Technology Assessment in South Africa

Josephine Kaviti Musango

Regional Technology Assessment Pilot Project Meeting 10 MAY 2023 @ 9:30-10:30

1. Energy technology assessment project

BIOenergy Systems Sustainability Assessment and Management portal

BIOSSAM: BIOenergy Systems Sustainability Assessment and Management Search this site

Search

▶ 0:00 ↔ 🖸 🗄

There is growing international interest in a low-carbon, green economy that uses renewable energy to reduce greenhouse gas emissions and to stimulate a sustainable development path...

South Africa's primary energy is supplied by fossil fuels and 93% of South Africa's electricity is supplied by coal-fired power stations. Although South Africa has a plentiful supply of coal, there is an urgent need for increased electricity generation capacity since the energy supply has already reached crisis proportions with an estimated electricity demand of 25 to 40 GW by 2025. Although South Africa does not have mandatory

Motivation for technology sustainability assessment

1. Lack of clear criteria for conducting proper assessment	2. TA concept treated as universal – strongly tied with western world	3. TA focuses mainly on impacts or outcomes of the technology
4. TA has relatively poor coordination and integration	5. Most TA do not takeaccount of holistic viewstatic in nature	6. No formal TA practice to support energy policy formulation
7. Application of sustainability- based criteria is not common in TA or decision-making		

2. Methodology: Transdisciplinary

Joint problem-solving of issues that concern sciencetechnology-society in a consultative manner

- Integrating actors outside academia
- Participatory
- Addressing real-world problems
- Research with society, not for society

Transdisciplinary process

BIOSSAM transdisciplinary process

Process	Description	Tools/approach	Participants involved	Technology assessment method
Joint problem framing	 Identify, map and contact key stakeholders Identify case study technology and context Define the objective for technology assessment Collect information about the technology assessed 	 Literature review Discussion meetings Focus group Interactive workshops Survey In-depth interviews Case study 	 BIOSSAM project team (> 10 team members) 8 community members in a focus group 303 interview participants 3 technology developers 	 Information monitoring Social acceptance Market analysis Systems analysis
Problem analysis and integration	 Explore existing technology sustainability assessment practices in Southern Africa Developed a conceptual framework for guiding technology sustainability assessment practices Developed a methodological framework for technology sustainability assessment Define sustainability indicators and develop model 	 Literature review Case study System dynamics Life-cycle perspective 	 BIOSSAM project team Informal meetings Conference participants 	 Systems analysis Market analysis
Joint problem transformation	Develop a shared and integral vision for improving assessment practices to foster technology development and adoption from research and development to market	 Repeated feedback on all kind of results Interactive workshops 	All identified project stakeholders	 Systems analysis Risk assessment Externalities / impact assessment

Joint problem framing: actors & disciplines / expertise

Joint problem framing: Case study: Eastern Cape province

Image sources: Musango, 2012; Amigun, Musango & Brent, 2012

Problem analysis and integration: Systems Approach to Technology Sustainability Assessment (SATSA)

Problem analysis and integration: SATSA methodological framework

Step 1: Identified needs for biodiesel development

- Addressing rural poverty
- Rural development and black economic empowerment
- Job creation particularly in the feedstock production

Scope of assessment

Step 1. Identified sustainability indicators

	Indicator	Symbol	Description	Units
Economic	Biodiesel production	ECO ₁	This measures the quantity of biodiesel production	Litre/year
	Biodiesel profitability	ECO ₂	This measures the profitability from biodiesel production	Rand/year
	Eastern Cape GDP	ECO ₃	This measures the per capita GDP in the Eastern Cape Province	Rand/person/ year
	Employment	\mathbf{SOC}_1	This measures the labour force participation due to the investment in the biodiesel plant capacity	Person
Social	Community perception	SOC ₂	This is represented by the effect of community perception on land conversion for biodiesel production crops and measures the community acceptance to grow these crops	Dimensionless
	Land use change	ENV ₁	This measure the changes in land use due to the introduction of biodiesel production. This includes changes in fallow land, agricultural land, biodiesel crop land and livestock land.	На
Environmental	Air emission	ENV ₂	This measures the total avoided air emissions due to investment in biodiesel production	kg CO ₂ /year
	Biodiesel by-product	ENV ₃	This measures the amount of accumulated glycerol resulting from biodiesel production.	Litre/year
	Water use	ENV ₄	This measures water use as a result of biodiesel production	Litre/year
	Energy use	ENV ₅	This measures energy use as a result of biodiesel production	kWh/year

Vensim:BIOTSA_V138.mdl Var:Fallow to biodiesel land _8 × File Edit View Layout Model Tools Windows Help 👗 🖻 💼 🔚 🔀 Baseline 管 🖻 3 :冬 萎 松 Y 招 🛠 🔝 🖽 🕐 📖 😂 🔂 🐘 🚵 / 🖶 | 🦞 🌹 👗 | 之 🚵 | ※ 🗩 😫 | 😪 | と c≺₽ ଲ୍ଲ **Main Menu** Doc Welcome to BIOTSA Model Simulator \approx This model is aimed at understanding the effect of biodiesel production development in Eastern Cape on selected sustainability indicators 4 Ы Contact JK Musango on jkaviash@yahoo.com for any queries 1 Runs Χ,σ SUSTAINABLE BIODIESEL DEVELOPMENT INDICATORS \$;;¥ SOCIETY ECONOMY ENVIRONMENT Click here to view BIOTSA sub-models Y≅x² VEN App Land use change Eastern Cape **€**∕GD Employment from economy biodiesel plant Water use Outputs 2 Outputs 1 **Biodiesel** production Energy use Community Causal Causal loop perception Biodiesel profitability loop2 Air emission Click any of these buttons to navigate to the specified view 111

Times New Roman 🛛 | 12 | b | i | u | s 📰 🖬 🖓 🌞 📑 칼 44 🔩

€÷⊡

Main menu

0

æ

🚯 Hide

P

W

3. Results: example of scenarios assessed

Fig. 17. Effect of perception, support and by-product use scenario on selected indicators.

Joint problem transformation:

Identified pinches along the biodiesel technology life cycle

Research and development	Business gate			
Pre-feasibility study/ Feasibility study	Development piloting	Hardware / Business design	Implementation, Operation, Product	Phase out
 Feasibility study Coordination of stakeholders' different objectives Lack of experience and knowledge 		 Risk of sourcing feedstock from imports Risk of losing fertile land Uncertainty on the enabling policy and regulatory framework Uncertainty on the profitability of the investment from the investor's perspective Uncertainty on the benefits of new crop venture from the community's perspective 		and ne spective v crop

Joint problem transformation:

Key messages from technology sustainability assessment results

Crop production	Biodiesel production	
Improve community perception of biodiesel crops benefits	Create local jobs at biodiesel plant level	
Promote local feedstock production	Use by-products as part of income-generation outputs	
Utilise non-food land for biodiesel crop production	Government support in the biodiesel production	
	 Reduce feedstock costs by sourcing locally 	

4. Uptake in policy and practice

- No formal technology assessment and still ad-hoc
- UNCTAD report proposal for an Africa Network for Technology Assessment
- Spillover effect in the National Strategy for Sustainable Development (NSSD) and green economy

United Nations Conference on Trade and Development

Review of Technology Assessment in Africa

Produced for the United Nations Development Account project on technology assessment in the energy and agricultural sectors in Africa to accelerate progress on science, technology and innovation Adapted from Stafford and Brent (2011), Musango and Brent (2011) and DEA (2011) NSSD systems approach to sustainability, five strategic priorities and means of implementation

South Africa

Focus on Natural Resource Management, Agriculture, Transport and Energy Sectors

Green economy sector study on energy in Rwanda

October 2013

Dr JK Musango Prof AC Brent

Centre for Renewable and Sustainable Energy Studies (CRSES), Stellenbosch University

5. Lessons learned

Context is key in determining the form and methods of technology assessment

The relevance of technology sustainability assessment in the energy sector due to diverse goals and multiple stakeholders along value chain

Formalising the technology assessment is important to enabling coordination and uptake in policy and practice

Questions?

Contact information:

Josephine Kaviti Musango Graduate School of Business University of Cape Town josephine.musango@uct.ac.za