Evoking ideas from small area estimation for the timely indicator prediction on a high level of disaggregation

Stefan Sperlich

Research Center for Statistics

and

Institute for Economics and Econometrics

Stefan Sperlich (Universit de Genve)

Evoking ideas from SAE

æ

The SAE Problem – 1

Assume, can calculate your area parameter (e.g. indicator) from y_i i = 1, ..., N (in sample *n*), for areas d = 1, ..., D, defining N_d, n_d

But

- too few y_i observed in most areas for direct estimation
- such that even design-based and synthetic estimators don't work
- you may even have no y_i in some areas $(n_d = 0$ but $N_d > 0)$

Idea

- use auxiliary information $(x_i \text{ and/or } v_d)$ which is useful?
- and use a prediction model relating it to Y_{id}

Note: The latter may be unspecified, then think of machine learning

イロト 不得 トイラト イラト 一日

A popular SAE model

A most general way is to think of the DGP

$$y_{id} = \varphi_d(x_i, v_d, \epsilon_i, u_d)$$

Model not identified that generally; so be more restrictive, i.e.

$$y_{id} = m(x_i, v_d) + \eta_d(z_i) + \epsilon_{id}$$
, $z_i \subseteq x_i$

with $\eta_d(\cdot)$ tackled as random (effects) function, as n_d too small In practice often set $\eta_d(Z_i) := u'_d Z_i$ with u_d random coefficients If $m(X_i, V_d) := \beta' X_i + \alpha' V_d$ then simply <u>linear mixed model</u> (LMM)

Notes: 1. all random terms are centered to zero

- 2. $m(\cdot)$ borrows strength from entire data set
- 3. haven't used geography or similar, so 'area' is any given cluster

Special Cases

Popular examples and straightforward extensions:

- Nested error models (i.e. Z only contains constant)
- Random regression coefficients model (i.e. $m(\cdot) \equiv 0$)
- Generalized MML with known link G (e.g. logit for binary Y)
- Area-level models (i.e. only V_d , U_d , maybe area-averages of X)
- Longitudinal (or panel) random coefficients models (then d for subject, i for time or repeated measurement)

Note: most extensions only fully parametric

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Typical Conditions – Typical Problems

- D.1 Y_{id} $(d = 1, ..., D; i = 1, ..., n_d)$ are conditionally independent given $(\boldsymbol{u}_d, \boldsymbol{V}_d, \boldsymbol{X}_{di})$, (SAE often takes \boldsymbol{X}_{id} as fixed)
- D.2 parameter of η_d , say u_d are i.i.d. across areas, mean zero and known covariance structure (matrix) $\Sigma_u \in \mathbb{R}^{\rho \times \rho}$,
- D.3 Independence conditions of u_d w.r.t. the rest
- F.1 conditions on $m(\cdot)$ and $G(\cdot)$, and maybe also conditions for existence of MLE
- Extra All further conditions depend on particular model specification and data

Note: Clearly, most problematic are the independences

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ○ ○ ○

Steps & Main Problems in SAE

Assume, data are already collected (given)

For sake of notation omit \boldsymbol{V}_d here

- I Define appropriately Y and prediction model
- Find appropriate estimator / predictor for m(·) and η_d(·)
 will take advantage of Σ := Var[Y|X] (= ZΣ_uZ' + Σ_e in LMM)
- Setimate MSE, construct prediction intervals

Note: huge literature on last issue, a lot about second, some about first **Remark:** for complete SAE procedure see *From start to finish: a framework for the production of small area official statistics* JRSS-A (2018) Tzavidis, Zhang, Luna, Schmid, Rojas-Perilla

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ― 臣

Steps & Solutions in SAE

- Take observed, transformed, imputed values?
- 2 either likelihood: maximize for known C_d and weights W_d

$$-\sum_{d=1}^{D} \{y_d - m(\boldsymbol{X}_d)\}' \boldsymbol{W}_d^{1/2} \boldsymbol{\Sigma}_d^{-1} \boldsymbol{W}_d^{1/2} \{y_d - m(\boldsymbol{X}_d)\} + C_d(\boldsymbol{\Sigma}_d)$$

or (different, maybe local) 2 or 3 step least-squares method

- S For MSE, bootstrap methods are becoming popular
- independence and occasionally distribution assumptions

Note: notation in step 2 for local smoother, \boldsymbol{W}_d could be kernel weights; you may use sieves like splines for $m(\cdot)$ and skip \boldsymbol{W}_d

イロト 不得 トイヨト イヨト

Fore-/Now-casting 1

To fore- or nowcast $Y_{id,t}$

obvious approaches are

- in SAE context $m(X_{id,t-k}, V_{d,t-k})$, choice of lag k case-dependent
- if 'sufficiently many' $y_{id,t-k}$, restrict to that sample, include them in $X_{id,t-k}$ and see
- if not 'sufficiently many' but known to be excellent predictors, you may first impute them, and then include them
- transformations and robust methods

Remark: key for our choice is a proper objective function for prediction

イロト 不得 トイラト イラト 一日

Fore-/Now-casting 2

Less obvious,

and so far even less explored approaches are

- explore flexibility/prediction power of **ML** for $m(\cdot)$ (and $\eta_d(\cdot)$?)
- explore inclusion of more $X_{id,t-k}$, including time trend, and select

Remarks:

apart from 1. proper *objective function*, main challenges are 2. inclusion of covariance structure,

3. MSE estimation and further inference

・ 何 ト ・ ヨ ト ・ ヨ ト …

Modeling Random Parts

Various proposals have been made, many based on idea

$$y_{id,t} = m(x_{id,t}, t) + u'_d Z_{id,t} + \mu_{d,t} + \epsilon_{id,t}$$

with μ_d such that $Var[\mu] = \sigma_{\mu}^2 \Omega$ and independent of rest, eg. for AR(1)

$$\Omega = \operatorname{diag}\{\Omega_d\}_{d=1}^D, \quad \Omega_d = \left\{ \begin{array}{cccccc} 1 & \omega & \cdots & \omega^{T-2} & \omega^{T-1} \\ \omega & 1 & \ddots & & \omega^{T-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \omega^{T-2} & \ddots & 1 & \omega \\ \omega^{T-1} & \omega^{T-2} & \cdots & \omega & 1 \end{array} \right\}$$

Recalculate $\boldsymbol{\Sigma} = Var[Y|\boldsymbol{X}]$ and apply similar formulas as before.

Note: this makes a big difference as $\hat{\mu}_{d,t}$ are used for prediction

Challenges for Estimation and MSE

However, until today not very popular

- for nonlinear models not efficient to work with $\mathbf{\Sigma}^{-1/2} \mathbf{y}$, $\mathbf{\Sigma}^{-1/2} \mathbf{X}$, ...
- rather think in terms of using them for efficient weighting
- automatically the case in likelihood estimation, but likelihood might be complex
- hardly software available
- for generalized models (nontrivial link, when Y is discrete)
- estimation of MSE even more complex; typically bootstrap methods proposed

く 伺 ト く ヨ ト く ヨ ト

Conclusions

- SAE is standard in NSOs for predicting indicators on highly disaggregated level
- Among existing methods, the GLMM assisted are the most popular ones when samples of *y_i*s are small
- until today lively research area in official and applied statistics
- has many overlaps with biometrics, e.g. analysis of longitudinal data
- extensions for prediction in time are so far rare but obvious

References: among various

A course on SAE and mixed models (2020) Morales, Esteban, Prez, Hobza Kernel smoothers and bootstrapping for semiparametric mixed effects models, JMVA (2013) Gonzlez-Manteiga, Lombarda, Martnez-Miranda, Sperlich

European grant proposal for training network

proposed Working Packages are

- integrating administrative and non-official (big data) in SAE
- Ombining Machine Learning
- and Smart Modeling (like time ans space structure)
- 4 Model selection, including variable selection
- o robustness issues, data transformation
- **o** post-selection and uniform inference

く 伺 ト く ヨ ト く ヨ ト