## "Making the Case for Cities and STI"

Peter Engelke Senior Fellow, The Atlantic Council

UN Commission on Science and Technology for Development

January 7, 2013

## **GLOBAL TRENDS 2030:**

## ALTERNATIVE WORLDS

ON THE OF THE PARTY OF THE PART

a publication of the National Intelligence Council





Source: McGranahan et al. 2005, Box 27.3, p. 807

Table 2: Urban-Ecological Problems at Three Spatial Scales

|                                                                  | Local scale                                                                                         | Regional scale                                                                                                | Global scale                                                                                   |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Main problem                                                     | Unhealthy/unpleasant conditions                                                                     | Deterioration of adjoining ecosystems                                                                         | Excessive environmental footprints                                                             |  |
| Locus of problem                                                 | Low-income neighborhoods, districts, and cities                                                     | Large cities, often industrial and mid-income                                                                 | Affluent cities, industrial cities                                                             |  |
| Indicators of problem                                            | Unsafe water, poor<br>sanitation, dirty fuels,<br>insufficient land<br>for housing                  | High air pollution,<br>groundwater degradation,<br>river pollution, resource<br>plundering, land use pressure | Greenhouse gas emissions,<br>importation of resource and<br>waste-intensive goods              |  |
| Drivers of problem                                               | Rapid population growth,<br>poverty & inequality,<br>development that ignores<br>ecology of disease | Industrialization,<br>motorization, development<br>that ignores regional<br>ecosystems                        | Affluence, high waste generation, development that ignores global ecosystems                   |  |
| Negative effects                                                 | Infectious diseases, low<br>human welfare/dignity                                                   | Loss of ecosystem services,<br>chronic diseases, declining<br>agro-ecosystem productivity                     | Global effects: climate change,<br>biodiversity loss, depletion of<br>scarce natural resources |  |
| Example of historic responses                                    | Sanitation reform movement                                                                          | Air and water pollution controls                                                                              | Sustainable cities movement?                                                                   |  |
| Source: adapted from McGranahan et al. 2005, Table 27.9, p. 806. |                                                                                                     |                                                                                                               |                                                                                                |  |

- I. Background
- II. Making the Case for Cities and STI
  - A. STI in the city
  - B. Design
  - C. Intersectorality
  - D. The innovation machine
  - E. Never-ending urbanization
  - F. Intercity learning

| Urban transport mode             | Energy consumed<br>(kJ per passenger-km) | Relative energy use<br>(energy used relative to bicycling) |
|----------------------------------|------------------------------------------|------------------------------------------------------------|
| SUV with 1 passenger*            | 5,950                                    | 99.2 (times bicycling)                                     |
| Mid-sized car with 1 passenger** | 4,200                                    | 70                                                         |
| Compact car with 1 passenger***  | 3,150                                    | 52.5                                                       |
| Compact car with 3 passengers*** | 1,100                                    | 18.3                                                       |
| Diesel bus (50% capacity)        | 800                                      | 13.3                                                       |
| Electric subway (40% capacity)   | 280                                      | 4.7                                                        |
| Walking                          | 150                                      | 2.5                                                        |
| Bicycling                        | 60                                       |                                                            |

Source: adapted from Gagnon 2006, Table 3, p. 6.

<sup>\*</sup> At 17 liters gasoline per 100 km traveled. \*\* At 12 liters gasoline per 100 km traveled.

<sup>\*\*\*</sup> At 9 liters gasoline per 100 km traveled.



Source: "The Living Skyscraper," by Blake Kurasek. http://urbantimes.co/2012/03/interview-with-the-father-of-vertical-farming-%E2%80%93-dr-dickson-desponmier/

- I. Background
- II. Making the Case for Cities and STI
  - A. STI in the city
  - B. Design
  - C. Intersectorality
  - D. The innovation machine
  - E. Never-ending urbanization
  - F. Intercity learning