# The role of science, technology and innovation in ensuring food security by 2030 

(1.) (1) ©

Shamika N. Sirimanne Director, Division on Technology and Logistics Head, CSTD Secretariat UNCTAD
Tuesday, 24 January 2017 CSTD Inter-Sessional Panel, 2016-17

## Outline

## 01.Challenge of Food Security

2. Role of Science, Technology, and
Innovation in Food Security
3. Fostering Innovative Food Systems
4. Policy Issues and Conclusion


## Food Security: Dimensions

## 01. Food Availability

"Supply side" of food security determined by level of food production, stock levels, and net trade.

## 02. Food Access

Economic and physical access, including policy focus on incomes, expenditure, markets, and prices in achieving food security.

## 03. Food Use/Utilization

Sufficient energy and nutrient intake, including attention to good care and feeding practices, food preparation, diet diversity, etc.

## 04. Food Sustainability

Adequate access to nutritious food at all times, including focus on weather conditions, political stability, and economic factors.

## Food Security: Scale and Sconpe



## Developing Countries

Of 795 million hungry people, 780 million live in developing countries.


## Smallholder Farmers

More than $80 \%$ of the food in Asia and Sub-Saharan Africa is produced by smallholders.

## Food Security: Global Efforts

## Recent global efforts to combat food insecurity



Millennium Development Goals

Target 1.C: Halve, between 1990 and 2015, the proportion of people who suffer from hunger

## Zero Hunger

 ChallengeEnd hunger, eliminate all forms of malnutrition, and build inclusive and sustainable food systems

## Sustainable

 Development GoalsGoal 2: End hunger, achieve food security and improved nutrition, and promote sustainable agriculture


# 02 ricle of Science, rechnology, and innovation in Addressing Food Security <br> <br> 1.110 <br> <br> 1.110 <br> - <br> , 

.




## Food Availability: Food Ga;

Science, technology, and innovation can play a critical role in producing more food

70\%

Food Gap


FAO (2006) identified a "food gap" close to 70 per cent between the crop calories available in 2006 and the expected calorie demand in 2050


## Food Availability: Innovatons

## Improved Soil Fertility

Nitrogen fixation, technologies for creating biological fertilizers, and precision agriculture.

## Genetic Modification

Conventional cross-breeding, transgenic crops, and synthetic Biology amongst other methods.

## Food Access



## Food Use/Utilization



## 1 billion people

## Insufficient calories and nutrients

Only 3 billion people have sufficient and not excessive calories and sufficient nutrients. Undernutrition can lead to hidden hunger, wasting, and stunting, with irreversible damage to individuals and society.

## Biofortification

## 40 countries, 10 million people

Biofortification has emerged as an effective approach for combating malnutrition. The orange-fleshed sweet potato developed at the International Potato Center has been recently recognized by the World Food Prize.


## Climate Change Adaptation/Mitigation

Carbon sequestration, locally adapted breeding for drought and heat tolerant varieties

## Precision Agriculture

Big Data and the Internet of Things (IOT) for decision support and index-based insurance

## Early Warning Systems

Satellite and meteorological data for adaptation to changing climate and environment

# New/Converging Technologies 

Potential profound impacts on the future of food

Synthetic Biology
CRISPR/Cas9


Big Data and IoT
Precision Agriculture


Artificial Intelligence
"Robot" farmers

Tissue Engineering
Lab-grown livestock


3D Printing
3D printed food


Drones
Hyperspectral imaging

Need for Global Technology Assessment and Foresight Mechanisms


## Innovative Food System

Ecosystem and supporting mechanisms for agricultural innovation



## Policy Issues

## Potential Topics for Discussion

## Agricultural R\&D and

 InnovationHow to increase agricultural R\&D and support agricultural innovation?

## Sustainable Production

How to support environmental sustainability and agro-ecological practices?

## Human Capacity

How to create knowledge base and pool of experts?


## Enabling Environment

How to strengthen infrastructure, policy framework and inter-sectoral links?

## Access to Technology and Extension Services

How to make tech, data, and services accessible to smallholders and particularly women?

International Cooperation
How to harness "knowledge aid" to support agricultural innovative capacity-building?

## UN Technology Assessmen

## ATAS XII

Advanced Technology Assessment System
THE ROLE OF PUBLICLY FUNDED RESEARCH AND PUBLICLY OWNED TECHNOLOGIES IN THE TRANSFER AND DIFFUSION OF ENVIRONMENTALLY SOUND TECHNOLOGIES


Thank you
Shamika N. Sirimanne shamika.sirimanne@unctad.org

