

The role of science, technology and innovation in ensuring food security by 2030

Shamika N. Sirimanne
Director, Division on Technology and Logistics
Head, CSTD Secretariat
UNCTAD
Tuesday, 24 January 2017
CSTD Inter-Sessional Panel, 2016-17

Outline

01.Challenge of Food Security

02. Role of Science, Technology, and Innovation in Food Security

03.Fostering Innovative Food Systems

04. Policy Issues and Conclusion

Food Security: Dimensions

01. Food Availability

"Supply side" of food security determined by level of food production, stock levels, and net trade.

02. Food Access

Economic and physical access, including policy focus on incomes, expenditure, markets, and prices in achieving food security.

03. Food Use/Utilization

Sufficient energy and nutrient intake, including attention to good care and feeding practices, food preparation, diet diversity, etc.

04. Food Sustainability

Adequate access to nutritious food at all times, including focus on weather conditions, political stability, and economic factors.

Food Security: Scale and Scope

Developing Countries

Of 795 million hungry people, 780 million live in developing countries.

Smallholder Farmers

More than 80% of the food in Asia and Sub-Saharan Africa is produced by smallholders.

Food Security: Global Efforts

Recent global efforts to combat food insecurity

Millennium Development Goals

Target 1.C: Halve, between 1990 and 2015, the proportion of people who suffer from hunger

Zero Hunger Challenge

End hunger, eliminate all forms of malnutrition, and build inclusive and sustainable food systems

Sustainable Development Goals

Goal 2: End hunger, achieve food security and improved nutrition, and promote sustainable agriculture

Food Availability: Food Gap

Science, technology, and innovation can play a critical role in producing more food

70% Food Gap

FAO (2006) identified a "food gap" close to 70 per cent between the crop calories available in 2006 and the expected calorie demand in 2050

Food Availability: Innovations

Improved Soil Fertility

Nitrogen fixation, technologies for creating biological fertilizers, and precision agriculture.

Irrigation Technologies

Renewable energy-powered irrigation pumps, rainfall storage systems, planting technologies for increased water efficiency, and "big data."

Food Access

Food Use/Utilization

1 billion people Insufficient calories and nutrients

Only 3 billion people have sufficient and not excessive calories and sufficient nutrients. Undernutrition can lead to hidden hunger, wasting, and stunting, with irreversible damage to individuals and society.

Biofortification

40 countries, 10 million people

Biofortification has emerged as an effective approach for combating malnutrition. The orange-fleshed sweet potato developed at the International Potato Center has been recently recognized by the World Food Prize.

Carbon sequestration, locally adapted breeding for drought and heat tolerant varieties

Big Data and the Internet of Things (IoT) for decision support and index-based insurance

Satellite and meteorological data for adaptation to changing climate and environment

New/Converging Technologies

Potential profound impacts on the future of food

Synthetic Biology

CRISPR/Cas9

Big Data and IoT

Precision Agriculture

Artificial Intelligence

"Robot" farmers

Tissue Engineering

Lab-grown livestock

3D Printing

3D printed food

Drones

Hyperspectral imaging

Need for Global Technology Assessment and Foresight Mechanisms

Innovative Food System

Ecosystem and supporting mechanisms for agricultural innovation

Policy Issues

Potential Topics for Discussion

UN Technology Assessment

ATAS XII

Advanced Technology Assessment System

THE ROLE OF PUBLICLY FUNDED RESEARCH AND PUBLICLY OWNED TECHNOLOGIES IN THE TRANSFER AND DIFFUSION OF ENVIRONMENTALLY SOUND TECHNOLOGIES

UNITED NATIONS New York and Geneva, 2000

Thank you

Shamika N. Sirimanne shamika.sirimanne@unctad.org