ENGINEERING 2030 AND NEW SKILLS FOR DIGITAL TRANSFORMATION IN CHILE AND LATIN AMERICA

7 November 2017
UNCTAD
Geneva, Switzerland

Marcia Varela
Deputy director for Technology Transfer
Technology Capabilities Division, CORFO
Chile

Outline

- 1. Engineering 2030 program
- 2. Competencies for transforming the digital industry

Chile at a glance

• **Population:** 17.7 million people

• Capital City: Santiago

• **GDP per capita, PPP 2015:** US\$23,563

• Inflation dic 2015: 4.4 %

• **Unemployment 2015:** 6.2%

Official Language: Spanish

Currency: Chilean Peso (CLP)

• Corporate Tax: 22.5% - Value Added Tax: 19%

Major Trade Partners: USA, Japan, China and Europe

• **Labor force:** 8.7 million people

NATIONAL AND INTERNATIONAL CONTEXT

- NATIONAL CONTEXT:

Economy strongly oriented to exports

Lack of economic diversification

Lack of private innovation (companies)

Outdated Engineering schools

Innovation and entrepreneurship as a driver

Agenda of Productivity, Innovation and Growth; in order to go from an natural resources-based economy to an more knowledge-based economy

- 1. Strategic selection policy
- 2. Foresting innovation in SMEs
- 3. Institutional Strengthening
- 4. Enhancing innovation and entrepreneurial ecosystem
- 5. Innovation for inclusive growth
- 6. Strengthening human capital and mission oriented science & technology

INTERNATIONAL CONTEXT: engineering tendencies

Change factors

- Demand for better technological solutions
- Access to new, specialized, and multidisciplinary content
- Use of IT in all phases of the productive process

Evolution process in the practice of engineering

- Increased scientific and technologic content
- Increased demand for higher quality and efficiency in engineering
- Accelerated product development and services globalization

Number of Engineers

- Evidence of engineers shortage in developed countries (1 million engineers by 2020-USA)
- Efforts to counter the relative lost of interest in studying engineering
- Numerous STEM initiatives (USA, OCDE)

NEW SKILLS for the XXI CENTURY

Source: New Vision for Education Unlocking the Potential of Technology, World Economic Forum, 2015.

WE MUST INFLUENCE THE LABOUR MARKET

A Skilled Workforce for Strong, Sustainable and Balanced Growth (OIT, 2010)

The experience from countries that have successfully linked the development of competences with growing productivity, employment and development, have addressed a policy with 3 objectives:

- 1. To meet the current demand for competences by adjusting the offer
- 2. To help workers and enterprises to adapt themselves to the change
- 3. To create and support competences for the demands of future job markets

Specially relevant in periods with vertiginous technological changes

2. ENGINEERING 2030

DIAGNOSTICS

Educational programs are not responding to the needs of the industry

- Weak Company demand for Innovation
- Limited incentives to the incorporation of graduate students in Industry

Research culture focused on scientific productivity with very limited applied approach and economic relevance

- Limited specialized human resources
- Graduate programs focused only on science

Lack of commercialization and tech transfer strategies in the Universities

DIAGNOSTICS (2)

- Problem solving in the industry requires multidisciplinary teams
- There are no professional PhDs to work on Innovation and Technology Transfer in Chile. In Europe and North America this type of formation is regular
- Lack of internationalization in the academia, commercialization of technologies from universities and student mobility

PROGRAM NEW ENGINEERING FOR 2030

Stage I International Benchmarking and Strategic Plan

2013-2014

24 Universities

Stage II
Implementation of Strategics
Plans

2015-2020

Stage III Follow up and Consolidation

2020-2030

17 Universities

Monitoring with international panel

Coordinated with MINEDUC

Main goal

Transform their educational programs under international standards in the fields of applied R&D, technology transfer, innovation and entrepreneurship, lifting them into a World Class category.

GINEERING 2030 PROGRAM

niversities participating

7 Projects in Implementation phase (phase 2)

i.175 students / 75% Civil Eng. (*)

ENGINEERING 2030: STRATEGIC COMPONENTS

HARMONIZATION OF UNDERGRADUATE CURRICULUM AND FOCUS ON GRADUATE TECHNOLOGY PROGRAMS

FOCUS ON APPLIED R&D AND LINKS WITH INDUSTRY

ENTREPRENEURSHIP AND TECHNOLOGY COMMERCIALIZATION

INTERNATIONAL PARTNERSHIPS/MOBILITY

HUMAN CAPITAL / CHANGE MANAGEMENT

World Class Engineering School

+ PROJECT GOVERNANCE AND SYNERGIES (in consortium projects)

ADDED GOALS for R&D+i+e and ENGINEER TRAINING

Goals by 2020

2. Competences for the transformation of digital industry

NATIONAL SMART INDUSTRY PROGRAM: emerging industries

5 experimental sectors or Labs

Astronomy

detection of failures, safety **Smart Mining** monitoring, autonomous fleets Automation Information Efficient irrigation and **Smart Agro** fertilization; logistic chain traceability Manufacturing Customer **Improving** Quality Intimacy Smart Industry Energy efficiency, Security, **Smart Cities** Centric Transport&mobility Digitalization ICTs to improve access, quality and Flexibilisation Value Chain efficiency at public health system, e-Health Participation remote cronic patient monitoring, telemedicine

> New capabilities and services for storage and processing of big data from astronomical observation (Chile hosts 70% of world's observation)

Smart processes, early

BUILDING INDUSTRY

Building information modeling (BIM) is a process involving the generation and management of digital representations of physical and functional characteristics of places.

TABLE 4-3. Gap in training in BIM for professionals and technicians to 2020

Carrage	Professionals and technicians trained	Demand for professionals and technicians with BIM	Gap in training as quantity of professionals and
Carreer	in BIM by 2020	skills by 2020	technicians by 2020
Architecs	9,942	20,869	10,927
Civil Engineers	2,458	27,977	U E R Z A 25,51 9
Other professionals	11,690	34,608	22,918
Technicians in building	3,568	31,580	28,012
Technical drawers	1,495	3,288	1,793
Technicians in civil engineering	557	4,261	3,704
Other technicians	2,630	15,322	12,692
Total	32,34	137,905	105,565

Source: Corfo, based on IALE Tecología Chile, 2017

CIVIL ENGINEERS IN DIGITAL INDUSTRY IN CHILE 2016 Students and graduates by gender

(average of last four/three years)

Source: ING 2030 with data of MINEDUC

PILLARS FOR TRAINING AND FORMATION OF ADVANCED HUMAN RESOURCES IN INFORMATION TECHNOLOGIES

- 1. Governance: Private Public Council
- Gathering information: framework of IT competences, gaps studies, baseline of key indicators
- 3. Coordination of public and private entities
- 4. System improvement: strategy for shorter undergraduate programs, synergies with others national strategies, creation of specialized capacities in IT
- 5. Diffusion: regarding the cultural relevance of digital technology, benefits of studying IT careers (such us industry demand, entrepreneurship, wage)

NEW DEMANDS FOR COMPETENCES FROM ICT INDUSTRY IN LATIN AMERICA

Essential networking technologiesbasic router, network security, wireless networking, VoIP and unified communications.

Emerging networking
technologies: video, cloud,
mobility,
datacenter&virtualization, big
data, cybersecurity, IoT and
software development.

- Latin America have the challenge of mastering the necessary skills to operate their ICT infrastructure and leverage technology for a sustainable growth.
- Skills are related to essential and emerging emerging networking technologies
- The demands for networking skills is triggered strongly by Internet of things

FIGURE 2

Total Networking Skills Demand and Supply Trends in Latin America, 2015-2019

Source: IDC, 2016

Total Essencial Networking Skills Gap Index by Country

	2015		2019	
	FTE Gap	Gap %	FTE Gap	Gap %
Argentina	5,882	27%	2,257	10%
Brazil	82,607	34%	65,665	30%
Chile	4,811	18%	1,110	5%
Colombia	11,998	24%	8,627	16%
Costa Rica	2,421	24%	935	8%
Dominican Republic	3,122	38%	2,318	25%
Ecuador	4,952	39%	3,476	25%
Mexico	79,736	37%	75,316	34%
Peru	7,497	30%	956	4%
Venezuela	1,883	23%	3,305	29%
Rest of Latin America	9,154	18%	6,455	7%

Source: IDC 2016

Emerging Networking Skills Gap Index by Technology

	2015		20	19
	FTE Gap	Gap %	FTE Gap	Gap %
Video Technologies	20,604	62%	22,953	61%
Cloud	40,105	47%	25,946	21%
Mobility	29,321	46%	46,955	62%
Data Center & Virtualization	124,740	46%	136,277	53%
Big Data	9,638	52%	7,053	24%
Cybersecurity	4,128	35%	3,338	22%
Internet of Things	4,465	34%	3,86	20%
SW Development	27,316	29%	32,35	31%

Source: IDC 2016

Emerging Networking Skills Gap Index by Country

	2015		2019	
	FTE Gap	Gap %	FTE Gap	Gap %
Argentina	7,698	42%		
Brazil	112,758	49%	95,916	41%
Chile	14,702	42%	4,192	11%
Colombia	16,352	38%	16,568	28%
Costa Rica	2,477	38%	2,631	30%
Dominican Republic	2,968	44%	4,321	51%
Ecuador	3,718	31%	5,725	36%
Mexico	78,197	42%	72,736	31%
Peru	8,034	52%	16,192	56%
Venezuela	5,943	38%	19,862	66%
Rest of Latin America	7,470	37%	30,074	62%

Source: IDC 2016

Lessons learned and recommendations for mid- and long-term

- ✓ Establish governance that includes government, academia and enterprises.
- ✓ Quantify gaps before defining the public sector's efforts.
- ✓ Establish a comparative diagnostic with international referents.
- ✓ Choose which gaps close and goals before design any initiative.
- ✓ Link academy with industry as a base for developing the change.
- √ Validate undergraduate's and postgraduate's curriculums with the industry.
- ✓ Promote women's participation in digital careers.

THANK YOU!

Contact:

Marcia Varela

Deputy director for Technology Transfer
mvarela@corfo.cl

