

NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS

INSTITUTE FOR STATISTICAL STUDIES AND ECONOMICS OF KNOWLEDGE

Science and Technology Foresight: Response to New Agenda

Alexander Sokolov

HSE ISSEK, UNESCO Chair on Future Studies

2024-2025 CSTD Intersessional panel

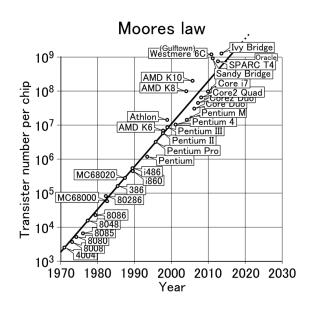
Technology Foresight and Technology Assessment for Sustainable Development

UNCTAD, Geneva, 22 October 2024

We want to know more about future S&T

Why is it important?

- New opportunities for innovation
- Competitiveness
- > Strategic planning
- ➤ Better understanding of social and economic impacts
- > Curiosity


Why is it that difficult?

- > Accelerating technological development
- ➤ Interconnectedness of technologies
- Growing complexity
- > Serendipity, unexpected ideas, wild cards
- > Lack of data vs Too much data
- Linear thinking

Linear thinking

Moore's law

Amara's Law

People tend to overestimate the effect of technologies in the short-run and to underestimate in the long-run

Roy Amara, futurist

Metcalfe's Law

A network's impact is the square of the number of nodes in the network $\lor \sim N^2$

Bob Metcalfe, creator of the Ethernet

Foresight: Definition and Basic Principles

Definition

The process involved in **systematically** attempting to look into the **longer-term future** of science, technology, the economy and society with the aim of **identifying the areas of strategic research and the emerging generic technologies** likely to yield the **greatest economic and social benefit**

Ben Martin

Basic principles

- Identify possible versions of the future
- Reach a consensus among stakeholders and experts about preferable target option of the future
- Together develop a set of consecutive measures for achieving the selected option of the future

Grand challenges,
Prospects of societal and
economic development

Changes of existing markets and emergence of new ones as a result of technological breakthroughs

Technologies with a high innovation promises

Identification of strategic priorities in STI

Grand challenges

The most complex, widespread and intractable problems that require solutions by many actors, including governments and international organisations

Megatrends

large-scale social, economic, political, environmental or technological changes that are slow to form but which, once they have taken root, exercise a profound and lasting influence on many if not most human activities, processes and perceptions

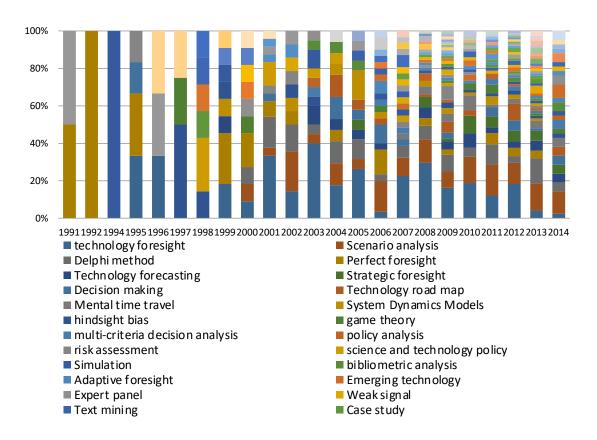
OECD STI Outlook, 2016

© ISSEK HSE

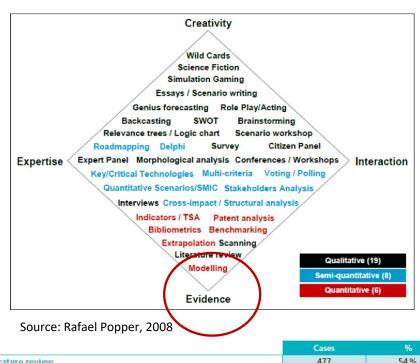
Foresight for Policy Making under Deep Uncertainty

Increasing uncertainty requires methods working under condition of high turbulence and abrupt change of trends

Problems	High uncertainty	Lack of data vs Too much data		Increasing complexity of processes and systems	Unpreparedness to shocks	Inter-disciplinarity	Polarity of opinions	Emerging short- term problems
Methods	Scenarios	Expert studies Big data and AI		Modeling	Wild cards	STEEPVL	Consensus forecasts	Situation analysis
Results	Range of possible futures	Exposure of tacit knowledge	Quick identification of emerging trends and weak signals	Understanding linkages between parts of the system	Unpredictable events with high impact	Wide spectrum of problems (economy, society, technologies, values etc.)	Shared forecast estimates	Operational decision-making



The Digital Transformation of Foresight

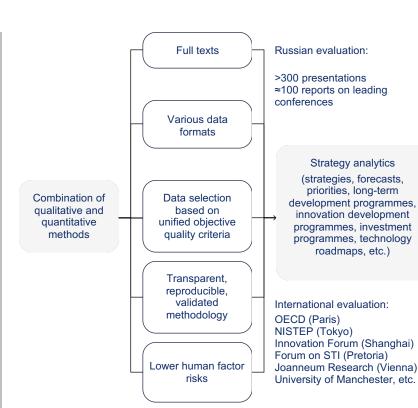

New Trends in Foresight Methods

Foresight methods

Source: Saritas, O., Burmaoglu, S. (2015) The evolution of the use of Foresight methods: a scientometric analysis of global FTA research output, *Scientometrics*, 105, 1, 497-508.

	Cases	%
Literature review	477	54%
Expert panels	440	50%
Scenarios	372	42 %
Trend extrapolation/Megatrend analysis	223	25 %
Futures workshops	216	24%
Brainstorming	169	19%
Other methods	157	18%
Interviews	154	17 %
Delphi	137	15 %
Questionnaire/Survey	133	15 %
Key technologies	133	15 %
Environmental scanning	124	14 %
Essays	109	12 %
SWOT analysis	101	11 %
Technology roadmapping	72	8%
Modelling and simulation	67	8%
Backcasting	47	5%
Stakeholder mapping	46	5%
Cross-impact/Structural analysis (e.g. MICMAC)	36	4%
Bibliometical analysis	22	2 %
Morphological analysis	21	2 %
Citizens panels	19	2 %
Relevance trees	17	2 %
Multi-criteria analysis	11	1 %
Gaming	6	1 %

iFORA – AI Powered analytical system for technology foresight


>800m

+30k documents daily

Languages

>354m	Scientific publications
>122m	Patents
>55m	Popular science media
>28m	Market analytics and professional media
>4m	Research projects / grants international and national programmes / foundations
>3.5m	Public procurement data
>3.5m	Clinical research
>3.5m	Social networks
>2m	Vacancies
>1m	Documents of international organisations, consulting companies
>300k	R&D reports
>100k	Scientific conferences
>5k	Educational programmes
	Other text documents

iFORA™ mentioned in *Nature* as an effective support tool for decision-making (Nature, 2020, Vol. 583)

iFORA™ featured by OECD as an example of successful initiative in science digitalisation (OECD Science, Technology and Innovation Outlook 2018)

HSE supoercomputer cHARISMa received a Priority 2020 reward in advanced technology implementation. Peak performance as of 2023: 2 petaflops.

≈CSTD issues paper, 2024

≈40 Special iFORA Issues (operational analytics)

>100 projects under contracts with largest companies, including global

UNLOCKS ADVANTAGES OF AUTOMATED ANALYTICS

iFORA is based on a modular approach

AND COMBINES SPECIALIZED MODULES FOR SPECIFIC TASKS

Trends	Technology development analysis	Technology independence assessment	Market assessment	Forecasts	Risk assessment	Legal environment analysis	Regional analysis	Identification of competence networks and competences	Analysis and prediction of professional competences	Emerging NLP solutions / services
Trend fitting	Science and technology landscape mapping	Calculation of technology importance and	Qualitative market assessment	Consensus forecasting	Competitiveness analysis	Analysis of legal framework, standards	Identification of development barriers for regional business	Identification of enterprise' networks	Identification of promising professions related to	Automated summarisation of texts
Assessment of importance and dynamics of trends	Technology life cycle analysis	dynamics in the country and globally	Market maturity assessment Procurement	Building of timelines of the future	Reputation analysis	Priority identification	Analysis of reputation in media	Identification of enterprise's specialisation	emerging technologies	Profile document analysis based on NER
Structural changes analysis	Technology sector impact analysis	Technology impact analysis in the country and globally Support measures	technology evelopment levels the country and globally upport measures analysis Building of technology and product portfolios	Selection of product	strategy development directions and threats	Comparison of national and international	Calculation of independent rankings	Analysis of educational programmes	most promising competences	Development of interactive interfaces and data marts Development of
Hype mapping	readiness level				Risk systematisation and mapping	Analysis of gaps in legal framework	Identification of key trends to work "blank spots"	Expert landscape analysis	Formation of project teams, experts selection Juxtaposition of trends and demand on personnel competences	
Identification of emerging trends					Identification of media and advertising impact			Identification of professional community leaders		

positioning

circular icons

shows the

interrelation

ship of the

themes

of the

Transmedia storytelling

PARAMOUNT PLUS APPLEMILISIC

AMAZON PRIME VIDEO SNEAR PEEK

WWE NETWORK EXCLUSIVE CONTENT

VR®PP IMMERSIVE TECHNOLOGY DIGITAL ART

MAG@LEAP REMOTE COMBABORATION

INTERACTIVEEXPERIENCE

VIRTUAL REPRESENTATION

SMART@EALTH

TACTILE (NTERNE

DATA GOWERNANCE

SMART[SERVICE

Circle icons -

specific topics

PEACOCK BREMIUM

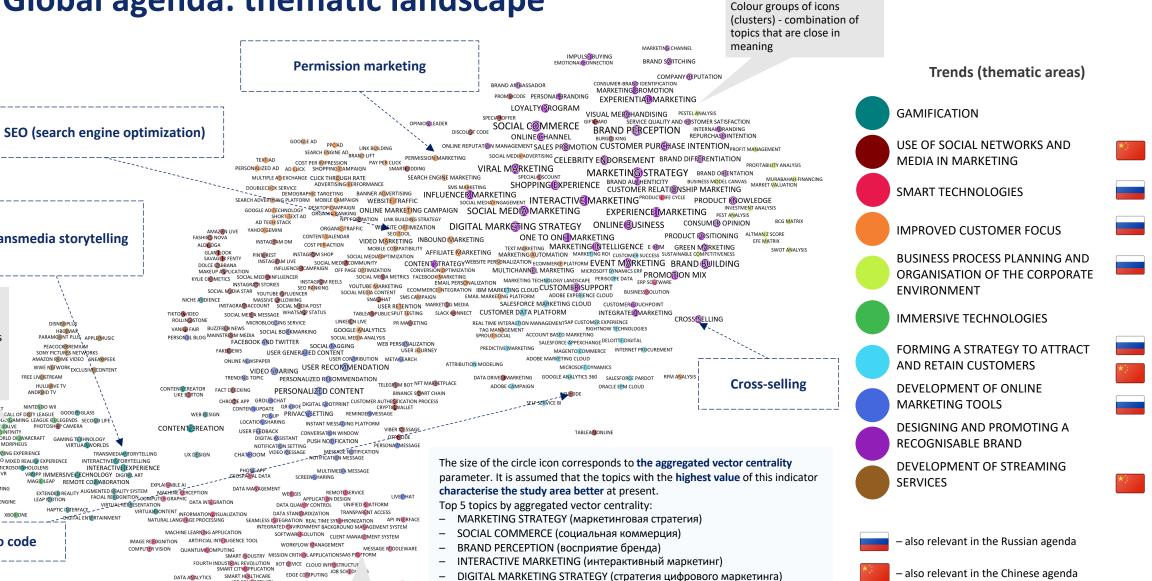
HULU@VE TV

CALL OF DUTY LEAGUE GOOGLEGLASS CLOUD GAMING LEAGUE GELEGENDS SECOND LIFE

ANDROID TV

NINTENDO WII

WORLD OF WARCRAFT

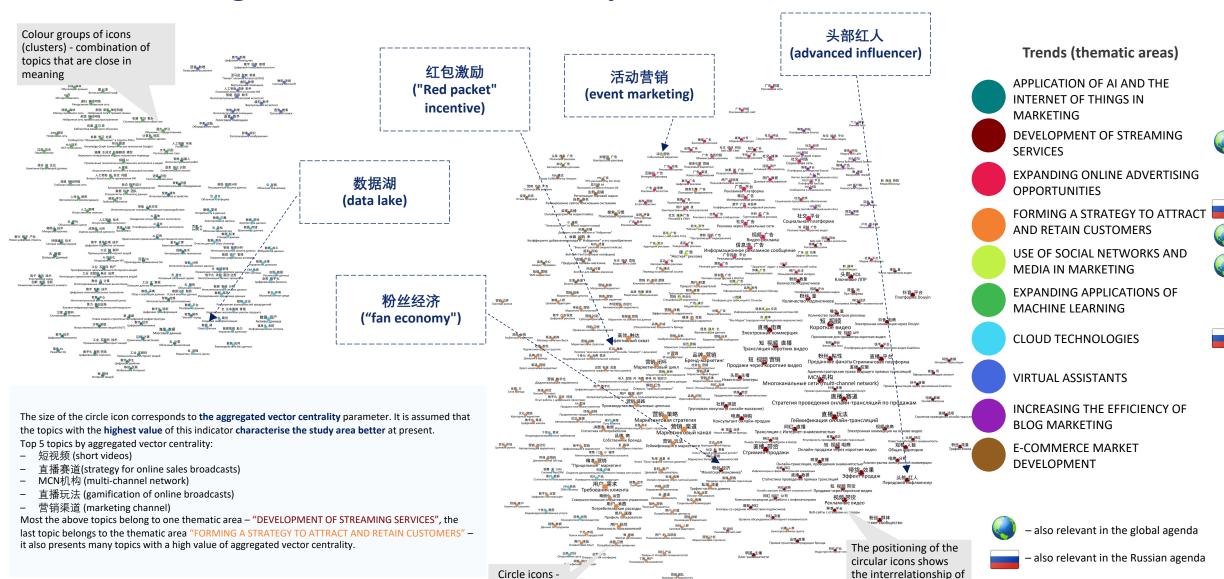

IMMERSIVE GAMING EXPERIENCE OCULUS GO MIXED REALIN EXPERIENCE

No code

SANZAR**W**GAMES

IMMERSIVE GAMING

Global agenda: thematic landscape


All the above topics belong to one thematic area - "DESIGNING AND

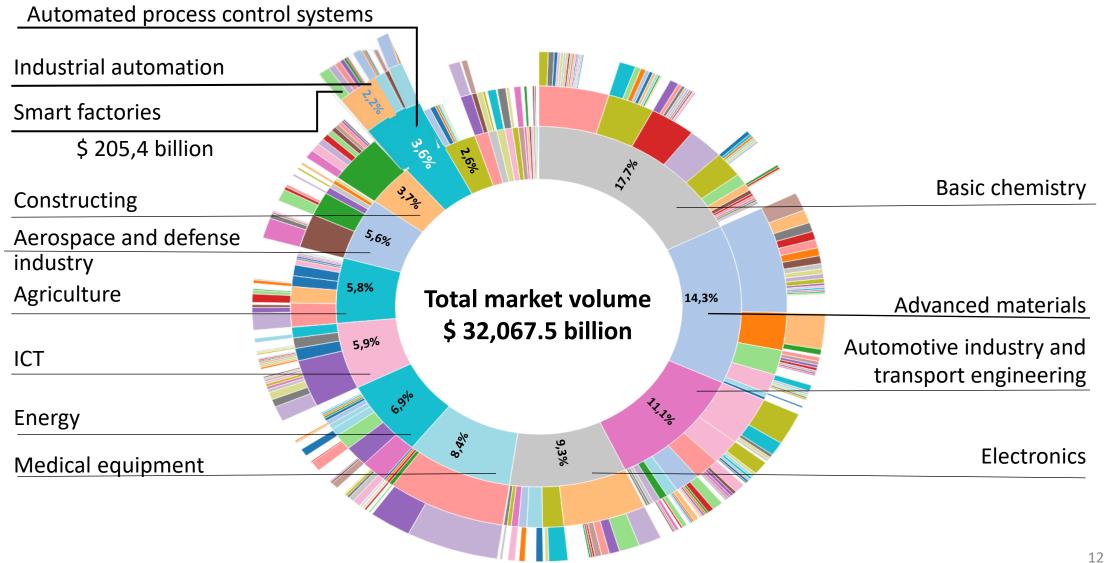
PROMOTING A RECOGNISABLE BRAND"

Chinese agenda: thematic landscape

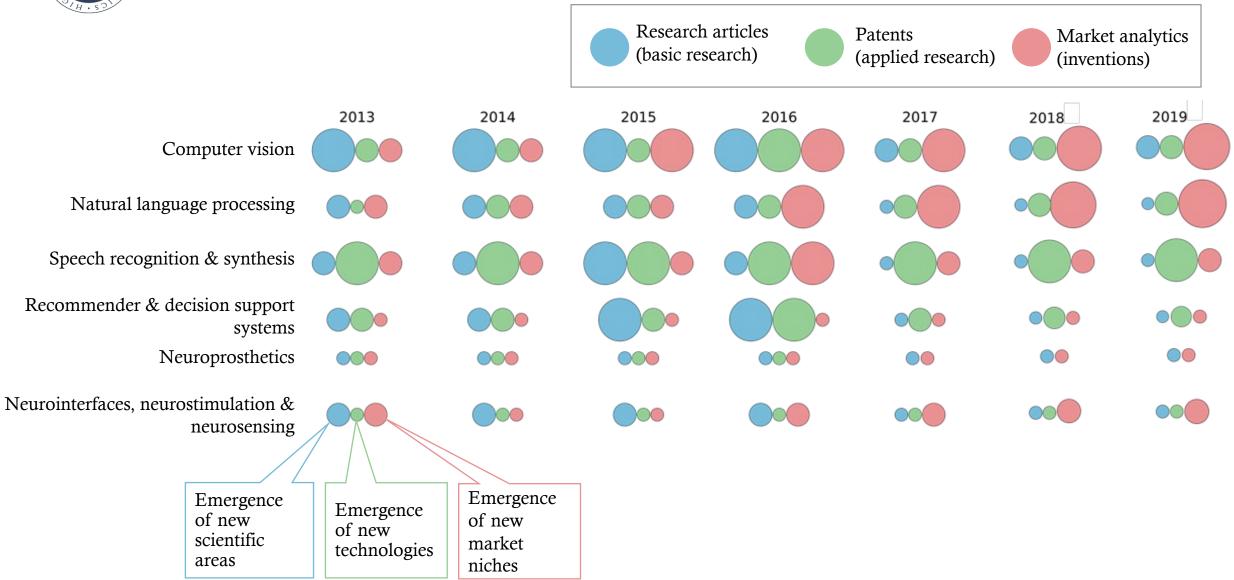
the themes

Source: iFORA big data mining system (copyright – HSE ISSEK)

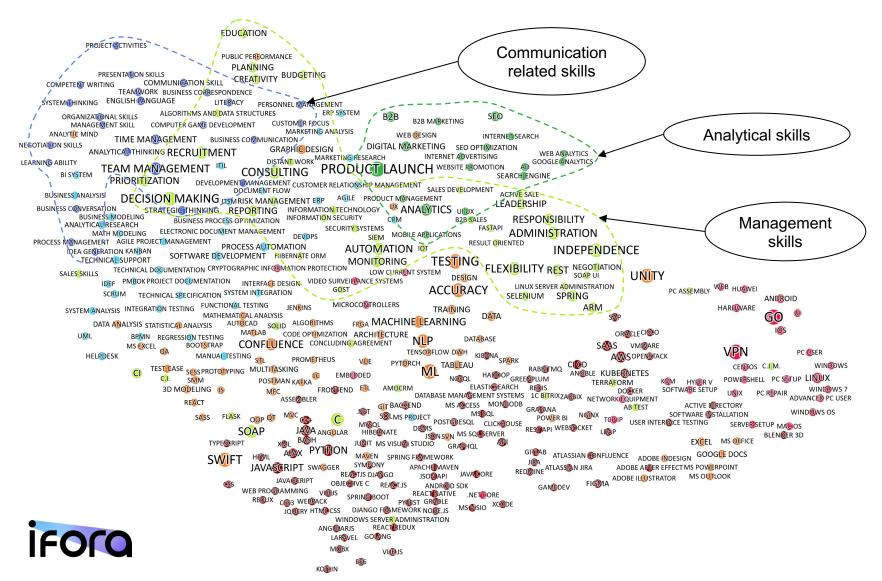
specific


topics

© ISSEK HSE


Data aggregation based on industrial market reviews

TECHNOLOGY LIFE CYCLE



IN-DEMAND SKILLS OF EMPLOYEES

CASE OF IT

Based on market analysis

Subject areas

- 1C BITRIX;
 O AUTOMATION;
- NFORMATION;
- INTERFACE DESIGN;
- WEB DESIGN;
 REACT
- UNIX;
- POWERSHELL;
 .NET CORE
- ANALYTICS;
- WEB ANALYTICS; MOBILE APPLICATIONS
- BACKEND:
- .NET; POSTGRESQL
- SOFTWARE DEVELOPMENT;
- DEVOPS; BUSINESS MODELING
- PROCESS MANAGEMENT;

 COMPUTER GAME DEVELOPMENT;
- BUSINESS COMMUNICATION

© ISSEK HSE

S&T Foresight for South Africa: Purpose

The project commissioned by the Department of Science and Innovation of South Africa and the National Advisory Council on Innovation

Purpose of the study:

Identification of priorities for new decadal STI plan with clearly defined targets that must be specific, measurable, actionable, realistic, relevant and time-bound

S&T Foresight for South Africa: Coverage

Areas for developing possible missions/priorities:

- 1. Circular economy/climate change
- 2. Health innovation
- 3. Education for the future and the future of society
- 4. High-tech industrialisation

Proposed priorities and expected socioeconomic impact:

- 1. Economic growth
- 2. Job creation
- 3. High quality health care services
- 4. High living standard
- 5. Access and supply of clean water
- 6. Affordable food
- 7. Carbon emission reduction
- 8. Low greenhouse gas emission
- 9. Export growth and competitiveness
- 10.Skills development
- 11.Renewable energy growth
- 12. Poverty alleviation

The Process

- 1 Scoping to identify the areas to be covered
- Data Analytics: statistical, semantic and scientometric analysis of the selected areas to understand their development, trends and dynamics, and significance for South Africa
- Interpretation and priority setting to identify the priorities for South Africa towards 2030, and set necessary targets
- 4 Strategizing: Provisional strategies are developed to achieve the priorities
- Policy recommendations and actions: Workshops with the participation of experts from South Africa and HSE to finalize policy recommendations and actions
- Reporting the outputs to include data and expert analyses with resultant policy and strategy recommendations

Statistical analysis: Case of Renewable Energy Growth

Renewable energy growth

- Access to electricity (% of population)
- Combustible renewables and waste (% of total energy)
- Electricity production from renewable sources, excluding hydroelectric (% of total)
- GDP per unit of energy use (PPP \$ per kg of oil equivalent)
- Renewable electricity output (% of total electricity output)
- Renewable energy consumption (% of total final energy consumption)
- Normalized indicators values and composite index for the «Renewable energy growth» factor

Semantic Analysis: Sources (2010-2020)

Global

29,312,296 documents

www.nytimes.com www.washingtontimes.com www.express.co.uk indianexpress.com

www.independent.co.uk

...

Highly relevant to South Africa

2,356,272 documents

www.aljazeera.com

www.africanbusinessmagazine.com

newafricanmagazine.com

africalaunchpad.com

radar.africa

www.esi-africa.com

•••

Health innovation

Global

527,665 documents

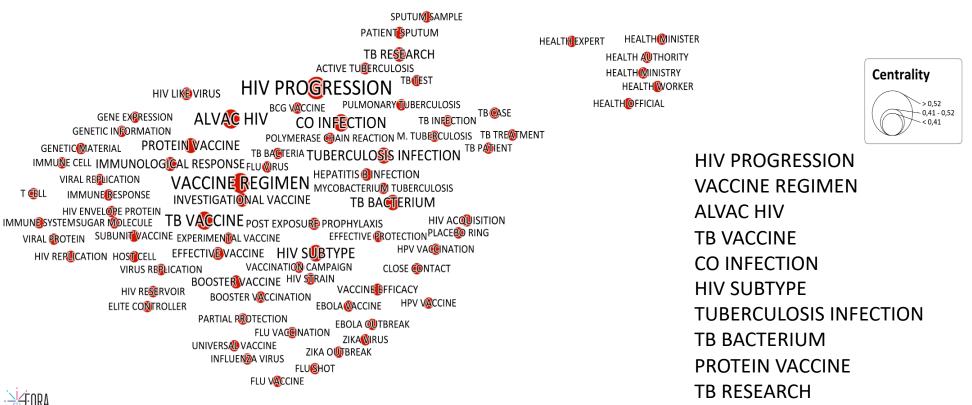
Highly relevant to South Africa

6,281 documents

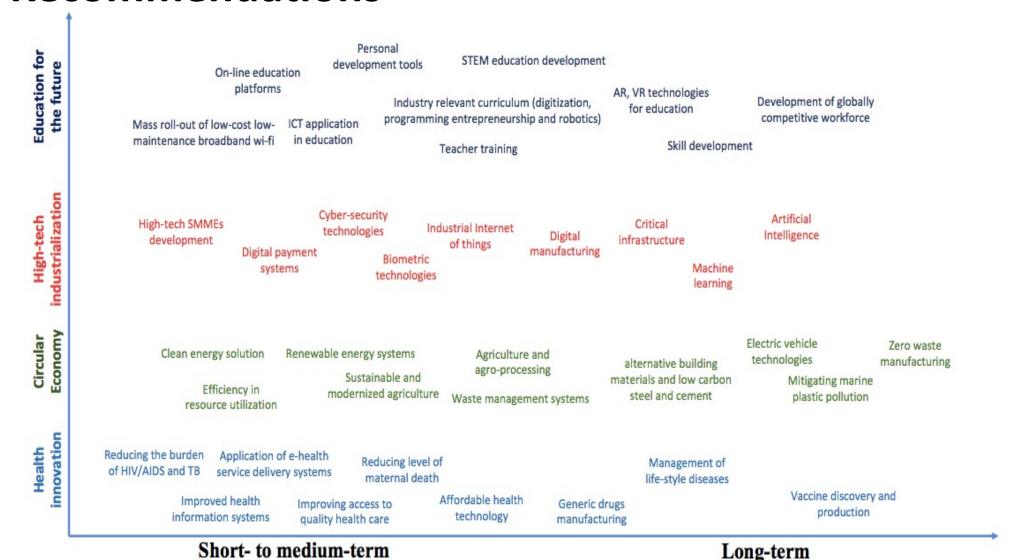
www.fiercehealthcare.com medicalxpress.com medcitynews.com www.healthcarefinancenews.com www.healthcaredive.com

• • •

Clusters Identification: Case of Health


CLUSTERS

- 1. Al, Machine Learning, Mobile applications \rightarrow E-Health
- 2. Clinical trial, high risk, increase risk \rightarrow Preventive medicine
- 3. Health care, patient care, health system → Unified healthcare system
- 4. Immune system, immune response, zika virus → Immune system & vaccination
- 5. Sexual violence, birth control, sexual activity → Reproductive health
- 6. Weight loss, physical activity, healthy lifestyle → Healthy lifestyle
- 7. Young people, global warming, rural area \rightarrow External factors


Immune System and Vaccination Cluster Map

HEALTHCARE WORKER

Strategic Roadmap for the Implementation of Policy Recommendations

22

UNESCO Chairs and Partners Forum "Transforming Knowledge for Africa's Future" "Science, Technology and Innovation Foresight for African countries", 30 September 2024

Recommendations to promote STI Foresight in Africa

- > Put S&T Foresight on the agenda of governments and international organisations
- ➤ Support educational and training programmes and practical trainings both in African countries and in leading Foresight organisations worldwide
- > Establish more futures labs and UNESCO chairs in African universities
- > Support financially implementation of S&T Foresight studies in African countries

S&T Foresight in BRICS Countries

Centro de Gestão e Estudos Estratégicos, CGEE

HSE University

Technology Information Forecasting and Assessment Council, TIFAC

Chinese Academy of Science and Technology for Development, CASTED

National Advisory Council on Innovation, NACI

Dubai Future Foundation

Egypt Science and Technology Observatory

Prince Mohamed University

University of Isfahan National Institute for Research Policy

© исиэз ниу вшэ

Collaboration under the UNESCO UNITWIN Programme

S&T Foresight for BRICS: Collaboration Initiatives

- ➤ At the Symposium "BRICS Science, Technology and Innovation Policy and Foresight Exercises" (December 4-5, 2023), representatives of all BRICS countries noted the need to conduct joint foresight research in the field of scientific and technical cooperation
- ➤ At the Workshop on Technology Foresight in BRICS (Moscow, September 18, 2024), the participants proposed to establish an S&T Foresight Association for BRICS

28 – 29 October 2024

Special Workshop: Prospects of Science and Technology in BRICS Countries

Yuan Like, CASTED, China. Open Foresight: Application and Experience in China

Gautam Goswami, TIFAC, India. Climate Change Challenges – a S&T Foresight Analysis

Yulia Milshina, HSE University, Russia. Wild Cards: Technology-based Responses

Mlungisi Cele, NACI, South Africa. Deepen and Accelerate Knowledge and Innovation Led Inclusive and Sustainable Development

Fernando Rizzo, CGEE, Brazil. BRICS Strategic Collaboration on Priority Themes

Mohamed Ramadan, STI Observatory, Egypt. Exploring Future Pathways for Strengthening STI Collaboration between Egypt and BRICS

Reza Hafezi, National Research Institute for Science Policy, Iran. S&T Foresight Programs in Iran: History, Opportunities and Lessons

Sergei Revin, Cosmonaut, Russia. Artificial Illumination from Space for BRICS Countries

Recommendations to promote STI Foresight in developing countries

POLICY

> Put S&T Foresight on the agenda of governments and international organisations

INSTITUTIONAL MEASURES

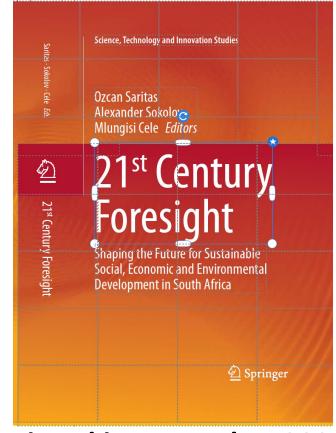
Establish more futures labs / UNESCO chairs in developing countries (e.g. at leading universities)

CAPACITY BUILDING

- ➤ Support educational and training programmes and practical trainings both in African countries and in leading Foresight organisations worldwide
- > Training of trainers in S&T Foresight

FINANCIAL ASSISTANCE

- > Support financially implementation of S&T Foresight studies in African countries
- > Support research and students mobility in Foresight


Thank you!

sokolov@hse.ru

http://issek.hse.ru

https://foresight-journal.hse.ru

https://unescofutures.hse.ru/

To be printed in November 2024

