

AI, Data Analytics, and STI: Impacts, Challenges, and Opportunities for Developing Countries

Ritu Agarwal

Wm. Polk Carey Distinguished Professor of Information Systems and Health Co-Director, Center for Digital Health and Artificial Intelligence (CDHAI)

United Nations Commission on Science and Technology for Development Intersessional Panel 2025-2026 17 November 2025 Geneva, Switzerland

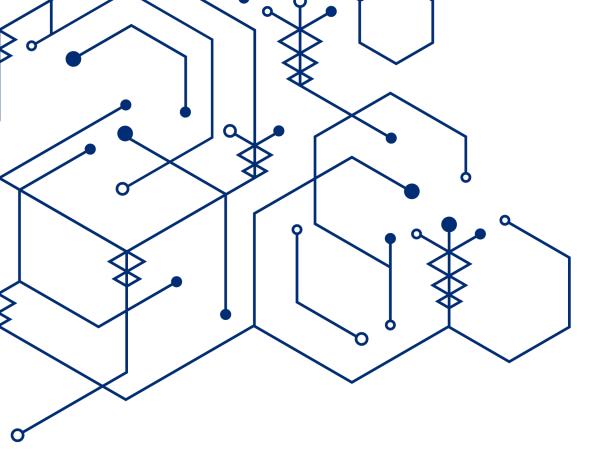
Issues Paper

On

Science, Technology and Innovation in the age of AI

Unedited Draft

Prepared by the UNCTAD Secretariat1



Healthcare, Gender

¹ Contributions from the Governments of Algeria, Austria, Belize, Brazil, Burkina Faso, China, Colombia, Ecuador, Indonesia, Japan, Latvia, Peru, Portugal, Russian Federation, Switzerland, Türkiye and Uzbekistan, as well as the Economic and Social Commission for Asia and the Pacific (ESCAP), Economic and Social Commission for Western Asia (ESCWA), International Labour Organization (ILO), International Telecommunication Union (ITU), United Nations Development Programme (UNDP), United Nations Environment Programme (UNDP), United Nations Educational, Scientific and Cultural Organization (UNESCO), United Nations Population Fund (UNFPA) and the World Health Organization (WHO) are gratefully acknowledged.

Note: Mention of any firm or licenced process does not imply the endorsement of the United Nations.

Overview

- The opportunity: How AI is redefining discovery and innovation in healthcare
- Challenges for developing nations: Heterogeneous capabilities, risks, and consequences
- Innovation and governance policies for healthcare: How governments and institutions can enable AI-driven healthcare change responsibly
- Role of open science and international collaboration: How shared data, standards, and partnerships can ensure AI benefits are global.
- Open questions and gender specific considerations: Recommendations for national policy and strategy to effectively leverage AI

An Al-powered transformation in healthcare

Pervasive and Wide-Ranging

Al-powered R&D: accelerating design generation, research operations and design evaluation

Clinical and Biomedical Research

- Predictive modelling
- Phenotyping and patient stratification

Genomics Research

• Al driven interpretation

Medical Devices and Diagnostics

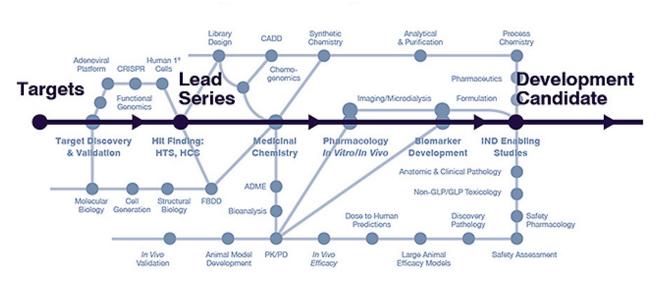
- Smart sensor data analytics
- Digital biomarkers identification

Clinical Trials and Translational Research

- Digital twins
- Patient recruitment

Public Health and Population Research

- Epidemiologic modelling
- Health equity analysis


Healthcare Operations and Outcomes

- Workflow and efficiency modelling
- Cost effectiveness and policy modeling

Transformation Across Healthcare

Transforming Drug Discovery

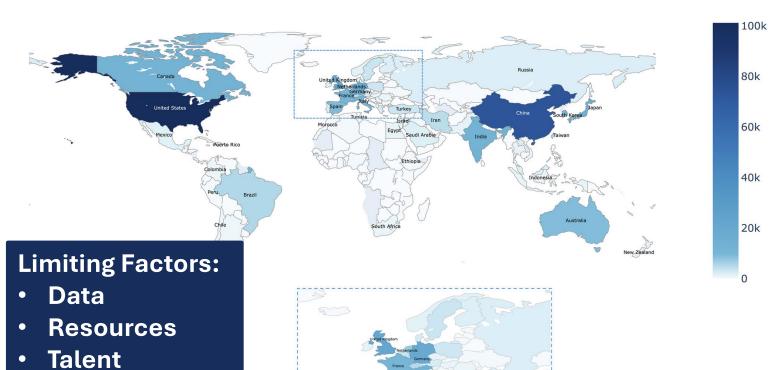
Drug Development & Delivery, 2024

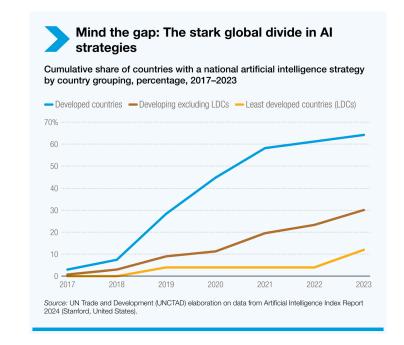
NVIDIA Unveils Large Language Models and Generative AI Service to Advance Life Sciences R&D

Part of NVIDIA AI Foundations, New BioNeMo Cloud Service Accelerates Life Sciences Research, Drug Discovery and Protein Engineering; Amgen and a Dozen Startups Among Early Access Customers

Al-driven drug discovery picks up as FDA pushes to reduce animal testing

By Sneha S K and Puyaan Singh
September 2, 2025 4:53 PM EDT · Updated September 2, 2025

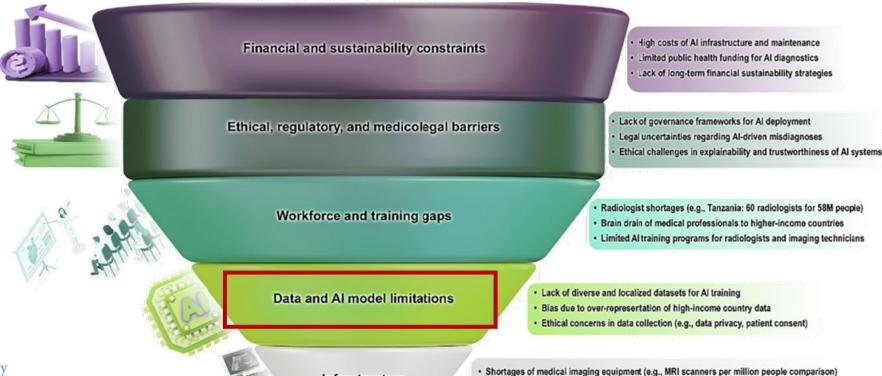



Heterogeneous capabilities, risks, and consequences

"THE FUTURE IS ALREADY HERE - IT'S JUST NOT EVENLY DISTRIBUTED."

WILLIAM GIBSON, THE ECONOMIST, DECEMBER 4, 2003

Developing Nations and Research Output



Al is transformative, but access and implementation are uneven, creating a critical need for **tailored strategies**

Counts of AI-focused life science articles by country, cumulated for the years 2000 to 2022 (n = 397,967)

Schmallenbach et al. 2024

Infrastructure

limitations

https://doi.org/10.1007/s00330-025-12031-z

Imaging

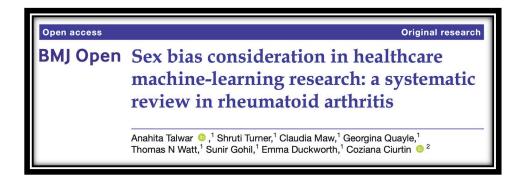
SPECIAL REPORT

Open Access

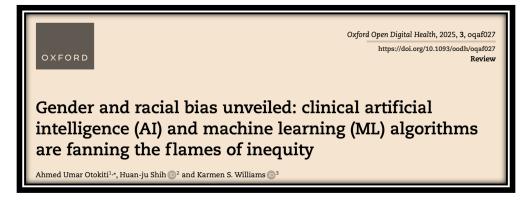
A perspective on AI implementation in medical imaging in LMICs: challenges, priorities, and strategies

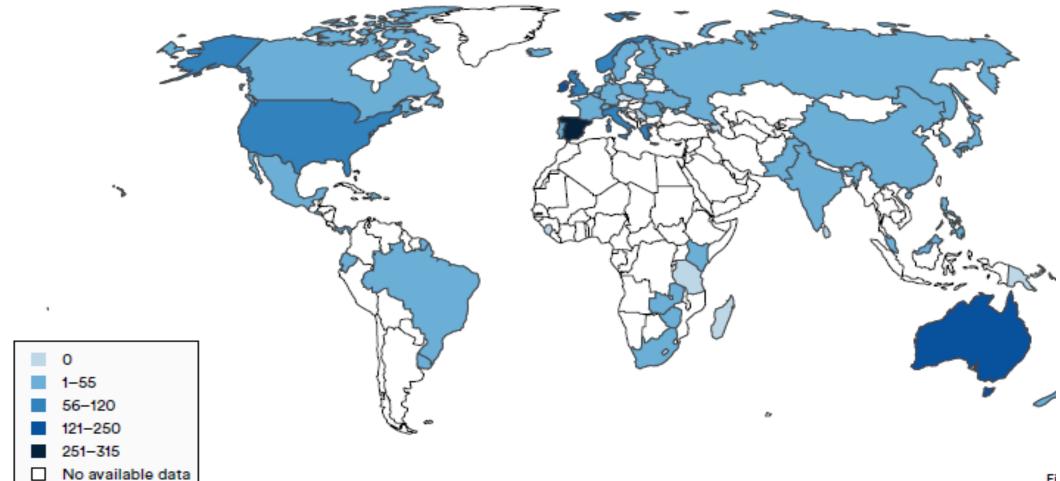
AI in Medical

Ahmed Marey^{1*}, Ona Ambrozaite², Ahmed Afifi³, Ritu Agarwal⁴, Rama Chellappa⁵, Sola Adeleke⁶ and Muhammad Umair⁷


- · Power instability affecting healthcare facilities
- · Lack of high-speed internet for cloud-based Al applications
- · Limited skilled technical support for Al maintenance

Looming Risks: Al Bias





Center for Digital Health and Artificial Intelligence

Innovation and governance policies

Number of mentions of AI in legislative proceedings by country, 2024

Source: Al Index, 2025 | Chart: 2025 Al Index report

Fi

Policy and Innovation Strategies in Healthcare

Promoting Agile and Adaptive Policymaking

Regulatory sandboxes for digital health (World Bank)

Pilot deployments to inform policy (WHO)

WHO's guidance on iterative governance

Fostering Collaboration

Public-Private Research Centers and Centers of Excellence (i.e. South Africa's CSIR CoE)

Shared data trusts for approved research with framework

Frugal Innovation: Leverage crosssector partnerships Strengthening AI & Data Governance

WHO's six ethical principles for health and AI

Third Party/Independent evaluation

Minimum data set and interoperability standards

Pilot Deployments: TRIage for Mothers using AI (TRIM-AI)

- AI/NLP tools can meaningfully augment maternal health services in resource-constrained settings
- Pilot deployment (started June 2022), TRIM-AI improved accuracy in predicting high-risk conditions by ~17 % over the prior baseline model and reduced help-desk agent workload by ~12 %

Frugal Innovation in Healthcare

- Using a highly efficient surgical model and variable pricing, Aravind Eye Hospital in India has reduced cataract blindness by more than 50 percent and serves all patients regardless of ability to pay
- Collaborated with Seva Foundation, local suppliers, training institutions, and government programs to scale low-cost cataract surgeries

WHO Ethical Principles as a Strategic Framework for Developing Countries

South-East Asia

Example: WHO SEARO investing in strengthening health information systems to collect sex- and gender-disaggregated data and monitor disparities

Promote Al that is responsive and sustainable **Ensure** inclusiveness and equity

Protect autonomy

Ethical Principles for Use of AI for Health

Foster responsibility and accountability

Promote human wellbeing, human safety and the public interest

Ensure transparency, explainability and intelligibility

Open science and international collaboration

International Organizations and Healthcare

Bridging Gaps in Access

Al4GH: Brings
 together research
 institutions across
 four countries
 (Bangladesh,
 Nepal, Pakistan,
 Sri Lanka) to share
 data frameworks
 and open research
 pathways to
 enable cross country learning
 and scalable
 solutions for SRMH
 research

Building Local Capacity

 Organizations like UNESCO, WHO, OECD, UN CSTD, and the World Bank enable training, infrastructure support, and technology transfer (Khan et al., 2024)

Aligning Global Standards

- International Telecommunicatio n Union (ITU) & WHO Focus Group on AI for Health
 - Creates benchmarking frameworks and shared standards for Al in health

Empowering Local Innovation

- George Institute for Global Health India
 - SMARThealth
 Pregnancy
 system uses AI
 to support
 frontline health
 workers in
 delivering high quality prenatal
 and postnatal
 care in rural India

Partnerships for Equity

NIH Common
 Fund's DS-I Africa
 program and the
 Wellcome Trust funded H3Africa
 initiative, which
 aim to build
 research capacity,
 infrastructure, and
 ethical governance
 in Africa
 (Adebamowo et
 al., 2023)

Collaborations in the Global South

MIDDLE EAST AND NORTH AFRICA Global Health and AI Network (Lebanon)

Responsible AI-based digital health interventions through capacity building and partnerships

LATIN AMERICA AND CARIBBEAN

Center for AI and Health for Latin America and Caribbean (Argentina)

Strengthen AI driven health research in region

SUB-SAHARAN AFRICA

Hub for AI in Maternal, Sexual, and Reproductive Health (Uganda)

Al-Driven networking platform to foster collaboration among Pan-African researchers, organizations and innovators

ASIA

AI-Sarosh (Pakistan)

Leveraging AI to reduce burden of sexual, reproductive, and maternal health issues in South Asia

Global South AI for Pandemic & Epidemic Preparedness & Response Network (AI4PEP) (Global)

How responsible Al can improve existing public health preparedness knowledge and practice gaps in the Global South

SUB-SAHARAN AFRICA

Hub for AI in Maternal, Sexual, and Reproductive Health (HASH)

Strengthening Maternal, Sexual and Reproductive Health (MSRH) systems through AI Led by Infectious
Diseases Institute (IDI),
Sunbird AI, and Makerere
University COCIS; funded
by IDRC and Sida

Engages researchers, innovators, and organizations across multiple Sub-Saharan African countries

Innovators: ~10 teams
from 7 countries
developing AI tools,
including chatbots,
predictive analytics, and
image analysis

Prioritizes ethics, gender equity, inclusion, and context-specific Al design

Provides capacity
building through the
HASH Network:
collaboration, mentoring,
training, and stakeholder
engagement

GLOBAL EFFORTS AI4PEP/AI4Mpox

Multi-Region Reach:

Connects
 researchers, data
 scientists, and
 public-health
 experts
 across Africa, Asia,
 Latin America, and
 MENA, creating
 a global network

Shared Learning & Rapid Response:

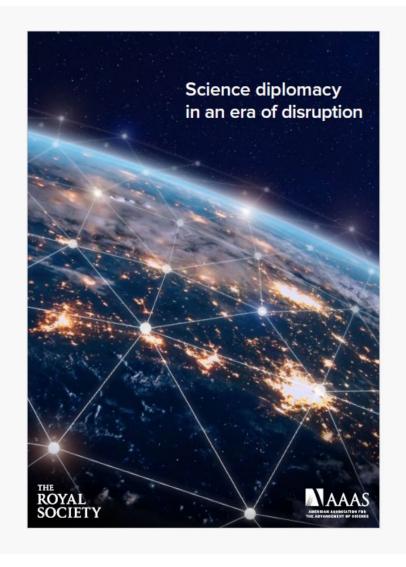
 Global collaboration enables crosscountry learning from outbreaks and interventions, accelerating public-health solutions

Standardized, Scalable Approaches:

- Development of frameworks, AI models, and tools that are adaptable
- Ensures ethical, equitable, and context-sensitive Al practices are shared globally

Policy & Equity Impact:

 AI4PEP can influence regional and international policy, strengthen equityfocused decisionmaking, and foster trust in AI solutions across borders


Al4MPox – a project using Al to track, model, and predict monkeypox outbreaks across countries, informing timely policy and resource allocation

A Potential Tool

- 1. Centrality of science in foreign policy and vice-versa
- 2. Vigilance to national security risks
- 3. The need for trust in practitioners
- 4. Elevating trust in science
- 5. Role of non-state actors
- 6. Inclusive international scientific collaborations

Open questions, opportunities and gender-related considerations

Uneven Benefits of Al

The proposed capacity-building initiatives must close the digital divide between developed and developing countries

Environmental Impacts

There is significant energy consumption and carbon footprint of training large AI models

Balancing Openness and Security

Openness increases the risk of misuse

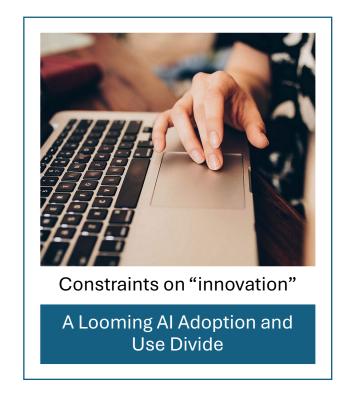
Al and (Gender) Equity

Al must address gender disparities in STI, such as through targeted programs for women in Al research

Impact on Researchers and Research

Concern of over-reliance on AI tools and potential research fraud

Future Workforce


Al can transform education systems and workforce training to prepare future generations for Al-driven economies

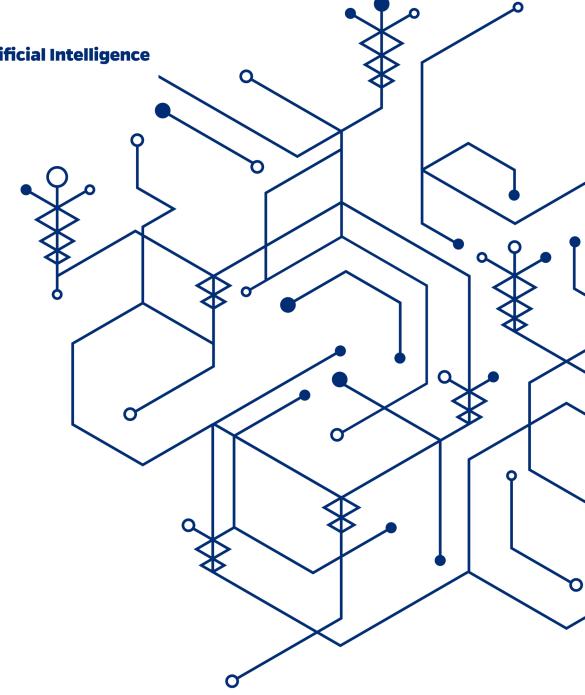
AI, STI, and Gender: Critical Exclusion Gaps

Recommendations for Member Governments

Successful transformation requires integrated STI policies that position gender inclusion as core competitive strategy rather than compliance burden.

National STI policy integration of gender-responsive AI development

Funding and investment framework transformation


Accountability and monitoring framework implementation

International cooperation and knowledge exchange mechanisms

With great power comes great responsibility

The Promise and Perils of Al

Thank you.

ritu.agarwal@jhu.edu

