Agriculture in Zambia_{By}

Lusekelo Kasunga

National Remote Sensing Centre (NRSC) - ZAMBIA

Agriculture - Zambian Scenario

- In Zambia, agriculture sector has been identified as one of the key main drivers for economic diversification and resilience (Ministry of Development Planning, 2017).
- It is the largest employer in the informal sector (Indaba Agricultural Policy Research Institute, 2020).
- Majority rural populations' livelihood depends on agriculture.

Agriculture - Zambian Scenario

- Like in many other African countries (FAO, 2018), agriculture in Zambia is dominated by smallholder farmers who largely depend on rainfall (Kabisa, 2019) and.
 - constrained by limited access to quality inputs, markets and access to credit (FAO, 2018)
 - Iow use of appropriate production technologies.
- Hence, climate change has posed serious challenge to the agricultural sector (Ministry of Development Planning, 2017).
- Govt set deliberate policies to promote agriculture and productivity (lower yield gaps).
 - Farmers Input Support Programme (FISP)

Agriculture - Zambian Scenario

Zambia is divided into agroecological zones

Crop phenology for main crops - Zambia

- The main crops produced, by consumption, are corn (maize), cassava, sorghum & millet, groundnuts and soya beans.
- The farming rain season runs between October and April.
- This constitute the main growing period for most crops grown by majority small-scale farmers.

Crop phenology for main crops - Zambia

Sowing												
Growing												
Harvesting												
	ocr	н	ocr	cr	y	S.	-					12
	-m	oþé	cm ¹	T.	uar	E	arc	lird	lay	inc	Ą	Sug
	cpt	0 Ct	0 V()ec	Jan	feb	X	A	×	ŗ	1	Au
	N	-	Z			-						

Phenological growth period for Maize, Source: Waldman et. Al., 2018

D

Crop phenology for main crops - Zambia

Phenological growth period for Maize, Source: Zhao et. Al., 2011

However, with climate change, this period is shortening and hence affecting crop productivity. Potentially contributing to, among other things, observed yield gaps.

Basic information for agriculture and current problems - Zambia

- As critical for economic growth and diversification (Ministry of Development Planning, 2017).
- Agriculture sector is key to provision and improving of livelihoods (Indaba Agricultural Policy Research Institute, 2020).
- Hence, need to adopt and employ advanced measures, tools and mechanisms to enhance the monitoring and management of the sector.
- Tools should be capable of accurate, timely and cost effective mapping of agricultural crops.
- For such applications as crop inventorying, crop yield estimation and forecasting (Zhu, et al., 2017).

Basic information for agriculture and current problems - Zambia

- However, in Zambia, the annual agricultural sample surveys are spearheaded by Zambia Statistic Agency (ZamStAts)(CSO, 2015).
- Through the Post-Harvest Survey (PHS) exercise, field figures pertaining to individual crop area planted and production quantities are collected.
- PHS is conducted by solicitation of personal interviews with respondents within selected Standard Enumeration Areas (SEAs).

Basic information for agriculture and current problems - Zambia

- The method, though archaic, is a well-established technique for collecting agricultural field data and it has proven itself in terms of reliability and, in some cases, accuracy.
- However, in order to attain reliably accurate national agricultural estimates there is need to acquire large number of samples and field measurements (Sharifi, 2000).
- High costs of executing the exercise.
- Highly prone to error due and subjectivity.
- Lack of detailed crop map showing the spatial distribution of the various crop types grown (Sharifi, 2000).
- Hence, need for improvement, with the great potential shown through RS and ML.

Agricultural projects related to remote sensing

- Govt interest in RS was expressed with the establishment, through an SI, of NRSC in 1999.
- NRSC promotes the application of RS for socio-economic development.
- NRSC thus took up an institutional task to apply an integration of RS and ML in agricultural crop type mapping, yield estimation and forecasting.
- For promotion of agricultural management and productivity in face of climate variability.
- See draft crop type map on next page

Requirements and expectation

Requirements

- Capacity building e.g. skillset and equipment
- Resources for extensive field exercise
- Improved methods of monitoring and management of agricultural sector.

Expectations

- Learn best practice from other countries on application of RS in agriculture mapping and managements.
- Networking for common goals and aspirations.

References

- Central Statistical Office, 2015. Post Harvest Survey 2014-2015 Agriculture Season (Small and Medium Scale Farms), Lusaka: Central Statistical Office.
- FAO, 2018. Guidelines on the use of Remote Sensing products to improve Agricultural Crop production forecast statistics in Sub-Saharan African countries, Rome: s.n.
- Indaba Agricultural Policy Research Institute, 2020. Zambia Agricultural Status Report 2020, s.l.: Indaba Agricultural Policy Research Institute.
- Ministry of Development Planning, 2017. 7th NATIONAL DEVELOPMENT PLAN 2017 - 2021. s.l.:s.n.
- Sharifi, M.A., 2000. Crop Inventory and Production Forecasting using Remote Sensing and Agrometological models: The Case of Major Agricultural Commodities in Hamadan Province, Iran. International Archives of Photogrammetry and Remote Sensing, Volume 33, pp. 1364-1372.
- Zhu, L., Radeloff, V. C. & Ives, A. R., 2017. Improving the Mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data. *International Journal of Applied Earth Observation and Geoinformation*, Volume 58, pp. 1-11.