

Encontrando soluciones que funcionan

Creating Climate Resilient Multispecies Fisheries in Belize Training Module #1

June 29, 2021

- Principles of climate resilient fisheries
- Importance of adaptive, science-based management in Belize
- Multispecies finish management in Belize

Climate change starts a chain reaction

Warming seas cause fish to migrate to cooler waters Simultaneously, fish productivity ebbs and flows

Fluctuating stock causes intraand international disputes Overfishing exacerbates the dwindling harvests

What's at stake?

1B people rely on

fish for essential nourishment

100s

of millions of people rely on fishing for their livelihood

85% of fisheries will be depleted by 2030

if we fail to act

THERE IS HOPE

The single most important action we can take to help the oceans deal with climate change is to create thriving, resilient fisheries.

Pathways to climate-ready fisheries

To achieve our collective fishery sustainability goals, we must augment sustainability practice with resilience

Sustainability and resilience are related

Resilience

Sustainability

- At scale
- Clear goals
- Scientific assessment
- Sustained yield
- Secure rights
- Effective monitoring and accountability
- Participatory and transparent process

Adaptive mgmt. Long-term planning

- EBFM
- Co-management
- Innovation
- Cross-jurisdictional cooperation Equity

- Connectivity of habitat and
 - populations Preventing
- destructive feedback
- Reserve capacity
- Acceptance of change
- Humility and learning mindset

Climate Resilience Pathways

- 1. Effective management and governance
- 2. Plan ahead for change
- 3. Enhance cooperation across boundaries
- 4. Improve ecosystem and institutional health
- 5. Uphold principles of fairness and equity

https://www.resilientseas.org/

FAO. 2021. Adaptive management of fisheries in response to climate change.

A national adaptive management framework

Setting sustainable, science-based, adaptable Total Allowable Catch (TAC) limits for conch and lobster

What is adaptive management?

Why is adaptive management important?

- Fisheries are dynamic systems
- Available data is often incomplete, uncertain, and accompanied by biases
- Full statistical stock assessments are often not possible

Adaptive Fishery Management in Belize

Key features of this framework

- Process of designing the framework is collaborative and stakeholder-driven
- Local stakeholder knowledge is incorporated during data interpretation
- Flexibility to use multiple performance indicators appropriate for species, available data, and technical capacity for data analysis

A national adaptive management framework

Setting sustainable, science-based, adaptable Total Allowable Catch (TAC) limits for conch and lobster

Why is adaptive management important in Belize?

- To maximize benefits of the managed access areas, must have good fisheries management inside each managed access area
- How can you manage if you don't know how many fish there are, or how hard they are being fished?

Belize has an extensive multispecies fishery

Multistakeholder collaborative work in Belize

Stakeholder outlined a triple-bottom-line set of goals to achieve conservation, livelihood, and food security goals:

 sustainability and resilience of food security;
sustainable economic growth and improved livelihoods; and
abundant finfish populations to support healthy ecosystems.

Happy fishers, happy people, happy fish!

Belize has an extensive multispecies fishery

Single-species management

...but most fisheries are multispecies

One approach: continue to manage single species

Catch all species at same rate

One approach: continue to manage single species

Catch all species at the same rate

Susceptibility = High Productivity = Low

Susceptibility = Low Productivity = High

Serial depletion and ecosystem collapse

Multiple species, multiple goals

Fish Baskets

- Create baskets of species with similar relative vulnerability to fishing and current status
- Fishing mortality targets for each basket
- Harvest control rules and measures to achieve the targets

Draft: Multistakeholder Collaborative Finfish Fish Baskets

Collaborative work in Belize

- Coral reef multispecies biomass target to support management, moving towards broader ecosystemscale management.
- Both single and multispecies fish baskets,
 - pelagic/migratory/gear, beach traps, opportunistic sling, emergent deep-slope fishery, forereef/open/handline, bait for other fisheries, habitat/traps/lines/nets, pelagic/migratory/gear – handline, large groupers, fished together, mutton needs to be managed, needs to be rebuilt, special considerations, resilient and rebuilt.

Collaborative work in Belize

- Management options on the table for these various species include:
 - Input control
 - Temporary ban, closed seasons, license limits, gear restrictions, and expansion of notake zones.
 - Output controls
 - Catch limits, bag limits, size limits (minimum and/or slot),

Science to action

FISHE.EDF.org

Questions?

