UNCTAD Ad Hoc Expert Meeting on Assessing Port Performance

Room XXVI Palais des Nations Geneva, Switzerland

12 December 2012

The Measurement of Port Efficiency

by

Prof. Kevin Cullinane Director, Transport Research Institute Edinburgh Napier University United Kingdom

This expert paper is reproduced by the UNCTAD secretariat in the form and language in which it has been received. The views expressed are those of the author and do not necessarily reflect the view of the United Nations.

TRANSPORT RESEARCH INSTITUTE EDINBURGH			Edinburgh Napier
TRì 🔘	TRANSPORT RESEARCH INSTITUTE	-	
Introduction to SFA			
	Models	Assumptions	Efficiency Component
	The Normal- Half normal model	 v_k~ iid N(0, σ_v²) u_k~ iid N⁺(0, σ_u²) 	$E\left[u_{k}\left \mathcal{E}_{k}\right.\right] = \frac{\sigma\lambda}{\left(1+\lambda^{2}\right)} \left[\frac{\psi\left(\frac{\mathcal{E}_{k}\lambda}{\sigma}\right)}{\Phi\left(-\frac{\mathcal{E}_{k}\lambda}{\sigma}\right)} - \frac{\mathcal{E}_{k}\lambda}{\sigma}\right]$
	The Normal	 v_k and u_k are distributed independently of each other and of the regressors 	<u> </u>
	Exponential model	• $v_k \sim iid \exp(0, \sigma_v)$ • $u_k \sim iid \exp(0, \sigma_v)$	$E[u_{k} \sigma_{k}] = \left(\sigma_{k} - \theta\sigma_{v}^{2}\right) + \frac{\sigma_{v}\phi\left[\frac{\left(\sigma_{k} - \theta\sigma_{v}^{2}\right)}{\sigma_{v}}\right]}{\Phi\left[\frac{\left(\sigma_{k} - \theta\sigma_{v}^{2}\right)}{\sigma_{v}}\right]}$
		 v_k and u_k are distributed independently of each other and of the regressors 	
	The Normal- Truncated normal model	• $v_k \sim iid \ N(0, \sigma_v^2)$ • $u_k \sim iid \ N^+(\mu, \sigma_u^2)$	$E[u_k \mid \varepsilon_k] = \left(\frac{\varepsilon_k \lambda}{\sigma} + \frac{\mu}{\sigma \lambda}\right)$
		 vk and uk are distributed independently of each other and of the regressors 	
	The Normal- Gamma model	• $v_k \sim iid N(0, \sigma_v^2)$	$E[u_k \mid \varepsilon_k] = \frac{h(p+1,\varepsilon_k)}{h(p,\varepsilon_k)}$
		 <i>u_k</i> ~ <i>na</i> gamma <i>v_k</i> and <i>u_k</i> are distributed independently of each other and of the regressors 	$ \begin{split} & h(p, \varepsilon_k) = E[z^r \mid z > 0, \varepsilon_k] \\ & z \approx N[-(\varepsilon_k + \sigma_v^2 / \sigma_u), \sigma_v^2] \end{split} $
Note: $\sigma = (\sigma_{\mu}^{-} + \sigma_{\nu}^{-})^{-r}$, $\lambda = \sigma_{\mu}^{-} / \sigma_{\mu}^{-}$, $\varepsilon_{\mu} = v_{\mu}$, and $\Phi(\bullet)$ and $\phi(\bullet)$ are the standard normal cumulative distribution and density functions.			

