Modeling plastic systems in Fiji and the Pacific using Pathways Presentation for the UNCTAD-UNDP Fiji National Symposium on Plastic Pollution Prevention

October 16-18, 2024

Breaking the Plastic Wave

SYSTEMIQ

No "silver bullets", but there is hope

Pew

Pathways

H

Pathways can assess your customized plastic system

Data on the plastic value chain from:

- Industry.
- Municipal solid waste authorities.
- Government reports and databases.
- Peer-reviewed articles.
- NGO reports.

Understanding your national plastic system using Pathways: a South African case study

Helping to develop strong, data-driven, locally-relevant policies

Current measures are ineffective in South Africa

1. Increasing demand for plastics

3. Many landfills are non-compliant

2. Backlog in waste collection services leads to open dumping

4. Mismanaged waste leaks into the environment

Pathways on a national level: South Africa

Analysis conducted by Council for Scientific and Industrial Research (CSIR)

Tailored policy scenarios:

- 1) How much pollution will there be under Business as Usual?
- 2) How much will this change under the Extended Producer Responsibility (EPR) targets set for plastic packaging in South Africa?
- 3) What are the trade-offs between costs and plastic pollution?

1) Plastic pollution increases under Business as Usual

Plastic pollution increases 75% by 2040

19% of plastic waste disposed is recycled

56% of plastic pollution is from open burning

Greenhouse gas emissions rise 63%

2) Extended Producer Responsibility (EPR) targets can reduce plastic pollution if implemented properly

Increasing collection and recycling to meet EPR targets can reduce plastic pollution by **33%**, compared to BAU

3) System change reduces plastic pollution

Potential benefits of system change in South Africa

Increased jobs (3%)

Reduced GHG emissions (37%) Reduced costs (67%)

Pathways in Fiji: Pew can support every step of the process

policy recommendations

SAMPLE questions for analysis in Fiji

- 1. What is the extent of primary microplastics being generated in Fiji and how much of it ends up in the ocean?
- 2. What are the costs and benefits of implementing recommendations such as container deposit legislation or extended producer levy systems?
- 3. What are the trade-offs of the various end of life options for plastic waste in Fiji?

Questions will depend on your needs This is **YOUR** process to lead and ours to support

Thank you! Questions?

Presentation by: Reyna Gilbert, Preventing Ocean Plastics The Pew Charitable Trusts rgilbert@pewtrusts.org Pathways download page

Team members: Stafford, W.H.L., Russo, V., Oelofse S.H.H., Godfrey, L, Segui, L.M., R. Bailey, K. Miller, J. Palardy, W. Lau

Applicability of the eight <u>interventions</u> from Breaking the Plastic Wave for Fiji's urban and rural populations + main stakeholders responsible

System Intervention	Urban	Rural	Main stakeholder responsible		
Reduce growth in plastic consumption	Highly applicable	Highly applicable	Consumer goods brands; retailers		
Substitute plastics with suitable alternative materials	Highly applicable	Highly applicable	Consumer goods brands; retailers		
Design products and packaging for recycling	Highly applicable	Highly applicable	Consumer goods brands		
Expand waste collection rates in the Global South	Highly applicable	Highly applicable	Local governments		
Increase mechanical recycling capacity globally	Highly applicable	Highly applicable	Waste management companies		
Scale up global capacity of chemical conversion	Highly applicable	Not applicable	Waste management companies; petrochemical industry		
Build safe waste disposal facilities	Highly applicable	Highly applicable	National governments		
Reduce plastic waste exports	Highly applicable	Somewhat applicable	National governments		

Aun conditions Plots Sensitivit	y Scenario builder	Scenarios	Model structure	Demand	Demand reduction	Flows	Box constraints	Economics	Transp >
Paired trade-offs betw	veen objectives 🛿								
4.6 ×10 ⁴	×10 ⁸		×10 ⁸		×1	0 ⁶			
4.5	3.9		3.9		1.12				
. 44	3.8		3.8		1.11	P.			
sdor 12	Ш 3.7 О а а	8			0Hg 1.1	4			
4.3	3.5	•	3.5		1.09				
4.2	3.4		3.4		1.08		-		
6.9 7 7.1	6.9 7	7.1	4.	2 4.4	4.6 6.9	7	7.1		
Aquatic pollution×104	Aquat	ic pollution ×10 ⁴		Jobs	×104	Aquatic	pollution×10 ⁴		
×10° 1.13	1.13 ×10°		De	ails: SCENA	RIO 1				
1.12	1.12	12	ОВ	JECTIVES:					
g 1.11	<u>ن</u> 1.11	-	Obj	ective 1 : Aquatio	pollution = 71110			Select from	•
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	0	Obj	ective 2 : Jobs =	41701			scenarios	-
1.09	1.09		Obj	ective 3 : OPEX =	339999740				
1.08	1.08			ective 4 : GHG =	1062090			Select from sub-optimal	<u> </u>
4.2 4.4 4 Jobs ×10	4.6 3.4 3.	.6 3.8 OPEX ×10	8					scenarios	-
			Tim	eseries scaling o	pefficients:				
Export obseen seens	ria ta now input file		(1)	Flow 3: Box2 Coll	ectedPlastic> Box3 I	ormalColled	ction:		
Export chosen scena	no to new input me	3		19.81% / yr, from	yr 1	-			
Filename for new input file		2	(2)	-16.00% / yr, fron	nalCollection> Box6 i yr 1	FormalSorti	ng:		
Brief description (optional)			(3)	-low 7: Box4 Info -19.87% / yr, fron	rmalCollectSorting>	Box9 CLMe	chanicalRecyling:		
		?							

