COUNTRY PROFILE OF SENEGAL ON AGRICULTURE DEVELOPMENT AND CROP MONITORING FOR FOOD SECURITY

Dr. Mamadou Adama SARR (CSE/UGB) & Mamadou Lamine SANE (DAPSA)

Abuja, 02 – 05 July 2024
I. INTRODUCTION

II. COUNTRY PROFILE

III. THE CURRENTLY AGRICULTURAL STRATEGY IN SENEGAL

IV. BASIC INFORMATION FOR AGRICULTURE AND FOOD SECURITY

V. PHENOLOGICAL SITUATION

VI. PARTNERSHIP WITH CENTRE DE SUIVI ECOLOGIQUE & DAPSA ON CROP MONITORING

VII. EXPECTATION
Senegalese agriculture is an important driver of development. However, a number of initiatives are being developed to enhance the efficient use of agricultural products in order to optimize yields.

The guidelines adopted by the authorities to revive agricultural activities after the health crises and COVID 19 are described in the flagship document PASAD.

Geospatial technologies have been identified as a reliable substitute for providing farmers, agronomists and researchers with accurate, up-to-date information on crop yields and phenology.
Senegal is a West African country located on the Atlantic Ocean coast, with a surface area of:
- 196,712 km².
- Mali in the east,
- The Atlantic Ocean To the west,
- Mauritania to the north,
- Guinea to the Southeast,
- Guinea-Bissau to the Southwest.
- Senegal has 14 regions,
- Capital: Dakar
- Population: 18,126,390 inhabitants.
- Harvested area in 2023: 3,796,617 ha
 Area under rainfed cultivation: 3,796,617 ha
 Coastline = 530 km
The Senegalese government has made agriculture one of the main pillars of its strategic vision for growth and development. This vision is embodied in various strategic plans aimed at achieving food sovereignty. Various strategic documents have been put in place to support the sector. We can mention some of them:

✓ The Senegalese Agricultural Acceleration Program (PRACAS)

✓ Agricultural Program for Sustainable Food Sovereignty (PASAD) 2022 - 2026.

The objectives of these plans are:

• Diversifying agricultural speculations and production systems;
• Ensuring food and nutritional security;
• Increase agricultural production and productivity;
• Strengthen financing, Research & Development and advisory services;
• Improve governance of the agricultural sector
THE CURRENTLY AGRICULTURAL STRATEGY IN SENEGAL

✓ Support the productive base through water management, sustainable land management and hydro-agricultural infrastructure

✓ Direct agricultural research to contribute to food sovereignty

✓ Increase cereal production

✓ Increase and diversify horticultural production

✓ Develop the groundnut sector and strengthen its competitiveness

✓ Develop the cotton sector and strengthen its competitiveness

✓ Reduce post-harvest losses

✓ Strengthen mechanization

✓ Re-think agricultural financing, making it more efficient and equitable

✓ Strengthen agricultural insurance
Senegal's cereal production in 2023 is estimated at 4,016,504 tons.

This includes products such as rice, millet, corn, sorghum and fonio.

Industrial and/or cash crops such as groundnuts, cotton, cowpeas, sesame and watermelon are also produced.

Horticultural crops such as onions and potatoes are seeing a marked increase in production (400,000 tons of onion production), covering national needs.

Main crop
- peanuts
- millet (souna and fonio varieties)
- sesame
- sorghum
- corn
- cotton
- rice
- sugar cane.
• Senegal comprises 6 major agro-ecological zones. These zones have their own specificities, and each zone adopts a different cropping pattern depending on its configuration and climatic conditions.

• The phenological situation of crops is highly heterogeneous and depends on sowing dates.

• Senegalese agriculture is mainly seasonal and rain-fed, centered on the wintering period. However, only 5% of the UAA is irrigated.
PHASE 2

Connecting Space to Village
Strengthening regional capacity for crop monitoring from Senegal

What: Respond to the need to overcome an AFS early warning systems under the CILSS Cadre Harmonisé through this pilot study in Senegal in the Peanut Basin by producing cropland and crop type mapping algorithms based on EO's potential, that will improve agricultural statistics and decisions at national level.

Who: CoP of Crop service (National administrations (SN/SECNA, DA, ANACIM, CNRA/ISRA, ANCAR, DAPSA, INP, CNAAS), Organizations/Private sector (UAEL: Union des Associations d’Elus Locaux, ...), Research and training institutes (ENSA, CIRAD, LTA/IST/UCAD, CNCR, ASPG, LBA, FAO, USSEIN, UFR-Agro-UGB)

Technical Support By:
- SCO/NASA
- PMU
- Nasa Harvest
Strengthening regional capacity for crop monitoring from Senegal

Define a relevant study area:

➢ Peanut Basin & Casamance
➢ Main existing crop in Sahelian & Sudanian climatic areas (peanuts, millet, sorghum, beans, etc)

The circles represent areas where field data were collected in 2018/2019/2020 (A/DB-1) at the national scale and 2023 (B DB-2) focus in the Peanut Basin/Casamance region.

BD-2: collection was based on the following points

BD-2: work is being finalized to digitize the limits of the plots on the basis of points in order to improve the classification

Set up a Database based on field data collection

➢ Use of geo-spatial data
➢ CEO

DB-1

3244 pts / 25%
9714 pts / 75%

DB-2

1408 pts / 14%
8379 pts / 86%
Strengthening regional capacity for crop monitoring from Senegal

The RF model trained and tested with dataset 1 achieved an overall accuracy of 96%, with a pronounced sensitivity to the Crop class reaching up to 98%.

The RF model achieves an overall accuracy of 96% and a high sensitivity to the Crop class. However, the sensitivity for the “No crop” class decreased from 88% to 85% compared to the 2020 model.
Sentinels for Agricultural Statistics

Project overview

Sophie Bontemps
Objectives:
- Engage agricultural National Statistical Offices (NSO) to demonstrate the *benefit of EO information* within their operational workflows
- Provide & demonstrate *validated algorithms, open source tools, products and best practices* for national agricultural statistics with EO *facilitating the uptake of EO information* in the NSO

Coverage Committee
- National Statistical Offices
 (Spain, Senegal, Malawi, Tanzania, Ecuador)
- FAO, World Bank, EC, WFP, CGIAR, OECD, GEOGLAM

Cloud Technology
- Surveys & in-situ data
- Improved Timeliness
- Algorithms & Analytics
- Geospatial Disaggregation
- Wall-to-Wall Coverage
- Synergy of Survey & Space

National Agricultural Statistics

PARTRNERSHIP WITH CENTRE DE SUIVI ECOLOGIQUE & DAPSA ON CROP MONITORING

ESA Sen4Stat project: Objectives & Scope
EO products supporting the use cases

- Pre-processed reflectance / metrics time series
- Biophysical indicators, e.g. NDVI or LAI
- Crop growth condition metrics at segment-level
- Cloud-free color composites at segment-level
- Wall-to-wall cropland – non-cropland map
- Wall-to-wall annual vs permanent cropland map
- Wall-to-wall map of the main crop type groups
- Wall-to-wall crop type map
- National crop distribution probability map at pixel-level
- Crop yield estimate at reporting unit
Sampling Design for Agriculture Statistics Survey according to each National Statistical Office

5 pilot countries to cover the range of sampling design used at national scale:

- **Area sampling frame** for Ecuador and Spain
- **List sampling frame** for Senegal and Malawi
- **Point sampling frame** for Tanzania
PARTRNERSHIP WITH CENTRE DE SUIVI ECOLOGIQUE & DAPSA ON CROP MONITORING

Sen4Stat open source system
Overall Accuracy: 96%
F-Score cropland: 0.97
F-Score non-cropland: 0.88
USE CASE: Cost efficiency

PARTRNERSHIP WITH CENTRE DE SUIVI ECOLOGIQUE & DAPSA ON CROP MONITORING

Map of cultivated area estimates by municipalities

Total cultivated area in Nioro du Rip = **139,650 ha**, i.e. nearly **61%** of the total area
Field campaign 2021: Crop type map (3 crops types)

PARTRNERSHIP WITH CENTRE DE SUIVI ECOLOGIQUE & DAPSA ON CROP MONITORING

OA = 88.2 %
How to customize CropWatch-ICP project in Senegal based on what we are doing?
Jarrajeuf