

Introduction of CropWatch Cloud Platform

Miao Zhang, on behalf of the CropWatch team PhD, Associate Professor

2nd July 2024

Workshop on advancing satellite-based crop monitoring to increase resilience in the face of global food insecurity, 2-5 July 2024, Nigeria

Outlines

- CropWatch Cloud and the methodologies
- Updates
 - Service modes
 - New tools for field data collection
 - Baseline dataset
 - > User defined crop monitoring
- Conclusion remarks

CropWatch Cloud

- CropWatch is a satellite-based hierarchical method of crop monitoring, with indicators of agroclimatic, agronomics, area, yield and production, earlier warning
- Release Quarterly and annually bulletins on global crop monitoring, covering 173 countries and regions down to provincial scales, with special focus on 47 key agricultural countries

Auto data fetching and preprocessing

CropWatch Components

- CropWatch-Pro: to produce crop indicators at any time and anywhere
- CropWatch-Explorer: to explore and download crop information
- CropWatch-Analysis: to analyze crop information jointly or individually
- CropWatch-Bulletins: an web page for release bulletins, and methods

cloud.cropwatch.com.cn

Component 1: CropWatch Processing

- CropWatch Processing offers an auto-processing chain from pre-processing of raw data to production outlook
- CropWatch generates 32 agro-climatic, agronomic, early warning indicators, and crop production (area, yield) and early warning,
 - Drought indices are included, spi, spei, vci, tci and vhi, cdwi,

 Data conversion Projection and transformation Vector to Raster Merge CALF CALF CI CI VClx Real Time development V/HI 	ld
 Clip Resample Band-combination Spectral-merge Temporal and spatial merge 	a oduction

Crop Areas

- Crop area information needs field data
- CropWatch integrates crop area estimation with geo-statistics & crop mapping
 - The CPTP method in complex agricultural landscapes (66%)
 - Transfer learning methods are integrated to reduce the reliance on in situ data (34%)

Crop type area = Cropland area * UEC * cropping proportion * crop type proportion

Area estimates at fragmented areas

- Fully automated objects identification from massive photos by integration of multiple deep learning networks
- Currently major crops such as wheat, soybean, rice, maize, rapeseed could be precisely identified

Crop type area = cropland area * cropping proportion * crop type proportion

Crop type proportion sampling

China: Millions of samples collected every year Global application: More than 20 countries already adopted the tools and sampling

> UNCTAD Innovation @UNCT... · 20h #Kenya completed the first field study on crop growth monitoring and yield prediction, under the #UNCTAD-#China Academy of Science #CropWatch Innovative Cooperation Programme.unctad.org/project/cropwa...

ZIMBABWE Craphatch FIELD STUDY

Legend • 1999-2017 (502. • 2017 (24.5万) • 2018 (2.8万) • 2019 (18.2万) • 2020 (29.5万)

• 2021 (88.8万)

2022 (102.575)

1.000

耕地

2.000 km

Unbiased estimating coefficient for existing cropland datasets

Due to both scaling effect and classification errors, we proposes a method for accurately estimating cropland area using the unbiased estimating coefficient (UEC) from existing cropland datasets

High resolution crop type monitoring services

Crop Condition

 adopting NDVI adjustments characterizing crop rotations or interannual phenological shifts, and this omission results in misleading information.

Crop Condition by separating irrigation and rainfed fields

Improve condition monitoring by separating irrigated and rain-fed arable land

The difference of crop condition between rainfed and irrigated fields: Because of sufficient water, crop condition and production remain stable in irrigated areas, while they fluctuate between wet and dry years in rainfed areas.

Rainfed: Blue Irrigated: Green Mixed: Red www.aircas.ac.cn

Seasonal maximum vegetation condition index

- VCIx is designed to eliminate the impacts of the crop phenology shifts between years and at different latitude
 - VCIx compares peak of vegetation index profile with the historic peak over the same growing season
 - VCIx is at range of [0, 1], where the high values are better crop condition and low values indicate worse crop condition

Yield models

- Yield prediction component is the weakest component in crop monitoring
 - VI saturation leads to poor performance when predicting yields, especially in dense or irrigated crop regions.
 - VIs have not precisely captured crop yield determinants, especially under extreme climatic conditions.
 - The uncertainty of current crop growth models makes it difficult to scale up to facilitate operational yield predictions.
- 4 types yield models are developed and integrated into CropWatch to reduce the uncertainty of yield prediction
 - Agro climate
 - VIs
 - Biomass-harvest
 - Machine learning

Data Driven Model for yield prediction

Yield = Function(climate, soil, vegetation, management)

Function: ML or DL X: climate, soil, veg, management variables at different phenological stage.

Predicted result

Early warning indicators

- Cropped arable land fraction (CALF) represents the total cropping proportion at early growing stage
- Agro-meteorological risk index (AMRI) considering meteorological suitability for crops at different growing stage is used for yield alarming
- Crop production index (CPI), integrating cropping area, condition, irrigation, intensity, productivity

Component 2: CropWatch Explore

CropWatch-Explore explore and visualize data products in vector, raster, global, country, districts, crops, indicators....

AIR

as.ac.cn

AIR

Component 3: CropWatch Analysis

- CropWatch Analysis is cloud based participatory platform for individuals or team from over the world analyzing CropWatch indicators for the global, a country or IOA to better use local knowledge.
- It provides create document, allocate and manage tasks, monitor schedule and publish the document online functions which let people over the world finish their documents together on the cloud platform.

CropWatch Team

Experts across the world

Author assignment and analysis

						Crapbatch		Home	Report
<u>Craphetch</u>	= 👂					West A	frica English	Miao 👔	During this monitoring period, maize and sorghum (spring to summer) were still growing, while rice (spring to summer) was being harvested. Overall, crop condition was average according to the crop condition developmer graph based on NDVI.
Reports	Home > Reports > August 2018 CropWatch bulletin August 2018 CropWatch bulletin Changsheng created at 2018-08-06 15:48:43 - cur	rrent status is Created .				ự 3 Publish <mark>Q View →</mark>	G₹ Update 👻 🕈 Create Ch	apter 👻	The CropWatch agroclimatic indicators show that rainfall and temperature separately dropped below average by 9% and 0.2°C while RADPAR increased by 2%. Consequently, BIOMSS was below average by 6%. In contrast, CAI and cropping intensity increased respectively by 5% and 3%. The map of spatial patterns for maximum VCI show that high values (larger than 0.5) of this indicator are widespread, while low values occur only in western Sinaloz northern Chihuahua and Tamaulipas provinces. According to the graph for spatial NDVI patterns and NDVI profi
Settings Auth Tag	Executive summary # Section 1 Executive summary	Author zenghongwei rene	Status	Q • Ø • Options	Global agroclimatic patter # Section 1 Global agrocimatic pattern	ns Author	Q • Status Optio	₽ •	crop condition was above average in 68.9% of planted areas, mainly in Veracruz, Tabasco, Coahuila, Guanajuato and Jalisco. On the contrary, crops in western Sinaloa, southwestern and northern Sonora, and northern Chihual and Tamaulipas (accounting for about 31% of all cropland), experienced below or close to average crop conditio a pattern also confirmed by maximum VCI. Altogether, crop yields for this season in Mexico are expected to be above average.
	Crop and environmental conditions in r	major production zones		Q • Ø •	Main producing and expo	ting countries	۹ +	2	0.9 0.8 0.7 0.6
	# Section 1 Overview 1	Author	Status Published	Options	# Section 1 Overview 1	Author	Status Option	ons	
	2 West Affrica 1 3 North America 1 4 South America 1	ephiri zenghongwei deabelle	Published Published Published		2 Country analysis 3 Argentina 1 4 Australia 1	Changsheng deabelle xingqiang	Published 11		0.2 0.1 0.1 02 03 04 05 06 07 06 09 10 11 12 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
	5 South and Southeast Asia 1 6 Western Europe 1	mshirbeny zhuweiwei	Published		5 Bangladesh (1) 6 Brazil (1)	mshirbeny Miao	Published a		(a) Crop condition development graph based on NDVI
	7 Central Europe to Western Russia 1	xingqiang	Published		7 Canada 1 8 Germany 1 9 Egypt 1	zhaodan zhuwetwei Mohsen	Published 11 Published 11 Published 11		Self Comments
						Vietnar South	m Africa_Olipa		< 0.5

AIE

Component 4: CropWatch Bulletin

Overview

West Afirica

North America

South America

Western Europe
 Central Europe to Western

Country analysis
 Argentina

Russia

Overview

Australia

Brazil

Canada
 Germany

Egypt

Ethiopia

France

India

Iran

Indonesia

Kazakhstar
 Cambodia

Mexico.

Nigeria
 Pakistan
 Philippines
 Poland

Myanmar

Romania

Thailand

Russia

Turkey

Ukraine

United States

Bangladesh

COUNTRIES

· South and Southeast Asia

MAIN PRODUCING AND EXPORTING >>

Provide global crop report as pdf or html format

Home >> Bulletin >> February 2019 CropWatch Bulletin (Vol. 19, No. 1)

February 2019 CropWatch Bulletin (Vol. 19, No. 1)

This bulletin features the latest production outlook for the major producers in the southern hemisphere and some isolated northerm hemisphere counties where cop development is sufficiently advanced. Focusing on the months of October 2016 to January 2019, chapters cover global, national, and regional-level agrecimatic conditions and the condition of crops that were growing or harvested during this time. For China, the bulletin presents crop candidons for each of seven key sign-acciligical zenes. The focus section report to criteria events with an impact on agriculture, the possibility of an El Niño event.

-	N. F. S.	 	

All bulletins >>

Key messages from the report

Agro-climatic patients over agricultural areas: global raintall was above average (4%), temperature was below average (-0.1°C), and sunshine was 1% above average. Most below average raintal areas with deficits more severe than 20% are consistent with El Niño patients.

- Agronomic indicators: Unfavorable conditions were observed in Romania (significantly below average Cropped Arable Land Fraction, CALF). Turkey, Ukraine, Kazavinstan, Pakistan, Mongolia, Morocco Zambia and Mozambique show large increases in CALF. High Maximum Vegetation Condition Insex (VCII) values, indicating favorable crops, occur mostly in Asia. The situation is mixed in Afghanistan (with lowest VCIs at 0.45 among 42 key countries, but 25% above average CALF).
- > China: agro-climatic conditions were generally below average with deficits of rainfall (7%) and surahine (6%). Temperature was average but the nationwide CALF fell 2% below the average value of the previous five years
- > Production outlook: the reporting period save the harvest of wheat in the Southern Hemisphere. Production of maize in Argentina and Mexico is above last year's output (3% and 21%, respectively) while South Africa suffered a marked drop (-14%); production of wheat in Australia suffered a marked drop so well (-13%), and so did Argentina (-3%).

Introduction

This CrepVatch builatin summarizes global crep condition developments and agroclimatic factors from October 1. 2018 to January 31. 2019 through 4 zoem in from a global overview of agroclimatic indicators (Chapter 1) to distilled descriptions of crep and environmental conditions in large production zones (Chapter 2), to individual country analyses covering 42 major producers and exporters including agro-ecological zones (Chapter 3) and China (Chapter 4). A special focus section is included in Chapter 5, covering crop production for 2018-2019 for countries in Southern Hemisphere, disaster events, and an update on El Nillo. This first part of the report includes the cover, table of contents, abbrevisions, a short overview of the different sections of the buildin and esculies summary.

Download

Introduction

Satisfactory crop condition prevailed over the South and Southeast Asian MPZ during the monitoring period with the maximum Vegetation Condition Index (VCb) reaching 0.86, even if the biomass production potential (BIOMSS) was 8% lower than the 5 year average. The fraction of cropped arable land (CALF) was average. Most uncropped arable land occurs in India. RAIN was well below average (20%) but both temperature and photosynthetically active radiation were slightly above average (TEMP +0.1°C, RADPAR +2%).

Some national RADPAR values had significant positive anomalies as for instance in the Philippines (+7%) and Cambodia (+6%). Myanmar recorded a slight negative anomaly (RADPAR -1%). Other countries recorded positive values but close to average. TRMP stayed close to average, TRMP stayed close to average, TRMP stayed close to average, TRMP stayed close to average. TRMP stayed close to average, TRMP stayed close to average, TRMP stayed close to average, TRMP stayed close to average. TRMP stayed close to average, TRMP stayed close to average, TRMP stayed close to average. TRMP stayed close to average temperature (0.5°C) than the average. The largest anomalies occurred at the beginning of the reporting in central India (close to +3°C anomaly in and around Madhya Pradesh, about +2.5°C anomaly in and East of Thailand). Close to average temperature prevailed throughout the monitoring period from western Myanmar across Bangladesh to most of northern India.

For RAIN, the largest anomalies were those of Nepal (48%), Bangladesh (-38%), India (-35%) and the Philippines (-25%) as well as Myanmar where excess precipitation was recorded (+27%). Most anomalies occurred at the beginning of the reporting period in October, with the largest excesses in southern India, Sri Lanka and the Mekong Delta area, and deficits in coastal Andhra Pradesh, Bangladesh and central Vietnam.

As a reflection of the agro-climatic conditions during the reporting period, the biomass accumulation potential fell below the reference of the SYA. The largest BIOMSS departures are those in India (24%), Philippines (18%), Bangladesh (18%), Myanmar (24%), Vietnam (23%) and Thailanc (120%).

Low values of VHI minimum were recorded mainly in India, Cambodia, Thailand, and Myanmar. Maximum VCI appeared mainly in India and Thailand.

Figure 2.4. South and Southeast Asia MPZ: Agroclimatic and agronomic indicators, October 2018 - January 2019.

Outlines

- CropWatch Cloud and the methodologies
- Updates
 - Service modes
 - New tools for field data collection
 - Baseline dataset
 - > User defined crop monitoring
- Conclusion remarks

Service modes

- Customization of CropWatch and/or development of CMS for specific needs (Mozambique),
- data processing engine and download for local services (Thailand),
- independent analysis for a country or IOA (Argentina, Cambodia, Mongolia)

Reducing the cost and technical barrier of establishing CMS

#36 Thailand 🛅 English													٥	=	87/82/66	•
Choose a new editor																
B # I U # # ?	FortFank	• Fonti	120 -	Paragraph				A	·	:= ·						
This monitoring perior agroclimatic indicators +23%), slightly below crop biomass product in the central region o	d covers th s, Thailand average te ion potent of Thailand.	e harvi experi- mperatial was Theref	est of enced ture (T estim	the ma wetter TEMP -C ated (B ainfall is	in rice and o 0.3 °C) i IOMSS s impo	crop a ooler w and ave i + 3%). rtant fe	s well a reather rage r The ra	than us adiation tio of ir growth	anting ual in (RAD rigate	of se this m PAR 0 d crop	cond s nonito %). As sland is	eason rice ring period a result of n Thailand	(dry sea d with ab these in is appro	ison). Acci ove-avera dicators, a ximately 2	ording to t ige rainfall a slight inc 12.5%. It is	he (RA reas loca
The NDVI developmen period. The large nega average although the October and at end of to the NDVI departure located in the northea the trends.	it graph de itive depar temperatu the Nover clustering ist, eastern	tures a re from mber 20 and th centra	rates re art Now 022, v ne cor al, and	that the ifacts, c ember t ihen it i respond I some a	e crop aused to Dec reache ding p areas i	conditi by clou ember d level rofiles, n the n	ons w ud cow was sli s close crop c orther	ere gene er in the ghtly his to the 1 ondition n region	rally t satell gher t 5-yea s wen . In th	ite im han u r max e gen e oth	the 5- ages. nusual imum. erally c er regi	year avera The tempe The rainfa Subseque lose to aw ons, cloud	ge durin rature w all was hi ntly, it fo erage on cover in	g the who as mainly gh at the llowed th 65.5% of the satelli	le monitor below the beginning e 15YA, Ac total arabl ite images	ing 15-y of cord le lar affe
At the national level, n Index (CPI) in Thailand	nost of the I was 1.05.	arable CropW	land atch	was cro estimate	opped es that	during the cri	the se op con	ason (C) ditions	NLF 95 vere o	1%). :lose t	VCIx v o aver	alues were ige.	around	0.86. The	Crop Prod	uctio
Regional analysis																
The regional analysis to cultivation typology. A	selow focu	ses on gical zo	some nes in	of the include (alread Centra	y ment I doub	ioned le and	triple-o	ropp	al zon ed ric	es of T e lowla	hailand, w inds (187)	hich are the Sou	mostly de uth-easter	fined by t n horticu	he ric Iture
Compared to the 15YA, above average accompa- estimate for BIOMSS (B	the Central anied by low IIOMSS +11	I doubl vor tem %). The	e and peratu NDVI	triple-c res (TE) develop	MP -0.	d rice le 3°C) an graph si	d higher	s experi r rainfall at crop o	Inced (RAIN Ionditio	cooler +30%	and w	etter condition a condition w the five-	ions. Rad is led to a year aver	liation (RAI slightly at age for mo	DPAR +3% cove-avera ist of the m) was ge onito
Indicators for the South higher rainfall (RAIN +21 the crop conditions were below everyone	-eastern ho 1%). This le e slightly be	orticult of to a s low ave	ure an lightly rage o	ea show above-i during th	v that te averag nis mon	e estim itoring (ture (Ti ate for period	EMP -0.7 BIOMSS except in	°C) ar (BION early	id radii ISS +: Janua	ation (F 2%). Ad ry. The	ADPAR -2 cording to VCIx was a	%) were I the NDVI at 0.85. A	below aver developm Il in all, con	age accom ent graph, i inditions wer	panie howe re slig
Agroclimatic indicators s (TEMP -0.1°C) were bell According to the NDVI d	show that th ow average development	e condi), while t graph	tions i the ra , the c	n the W infall (R rop cond	estern AIN, +2 ditions	and So (9%) wi were si	outhen as abov gnificar	e averaç tiy belov	ere slip jø. The vavers	ghtly b a avera 1ge. A	elow a age we ccordin	ierage: rad ather condi g to the VC	iation (RA tions led Ix value r	ADPAR -29 to a 3% inc of 0.89, cro	6) and temp prease in Bip condition	oerat IOMS is we
In the Single-cropped r +7%) were above avera graph, the crop condition	rice north-e ige. All these ns were clo	e agroc se to av	regio limatic rerage	n, the te indicate Consid	empera ors led fering t	ture wa to an in he mod	s belov crease lerate \	r averag in poter 'Clx valu	e (TEM tial bio e of 0.	AP -0.5 mass 86, the	5°C), w (BIOM e crop (hile radiatio SS +3%), A conditions a	on (RADP according are consid	AR +3%) a to the NDV lered norm	and rainfall /I developr (al.	(RAII nent
Figure 3.41 Thailand's	s crop conc	lition, G	Octob	er 2022-	- Janu	ary 202	3.									
	Jam	. Inf.	Aug	540	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May				
		*	4	*												
Malas		*	1	3	1	1	1	1				1				
Malan Rac (Male)					-	1	7	7				T				
Malas Rice (Maley) Nice (Second)	7						9			0 0	1					
Malas Rice (Male) Rice (Second)	•	Sowing		Growing		Harveette										
Matas Rise (Maky) Rise (Second) (a) Phenology of major cro	2	Sowing	-	Graning	•	Harvester										
Maiae Biar (Mair) Biar (Second) (a) Phenology of major cro tra	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sowing	•	Growing	•	A	- Q	Pa	37	e	2					
Mails Res (Mak) Res (Maks) (a) Phenology of major orc Put	2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	Sowing	•	6rowing **	•	J			N.	S	2					
Mater Res Mario Res desend	2055	Sowing	•	Growing	•	2			al al	S	7	٦				
Mater Res Mario Res devend		Sowing	•	Growing	45	2		×	N. N.	E	7	4				

Tools for ground truth data collection

- The field data collection prevents most systems have crop area and yield components
 - Cost, labor and time consuming
- Two tools developed for free use
 - GVG app for crop identification and FieldWatch for yield measurement with image recognition

FieldWatch for yield data measurements

GVG Crop type identification from geo-tagged photos www.aircas.ac.cn

FieldWatch for yield data collection

- With the support of the DL model, the number of ears/m2, and seed number per ear, size of seed are determined for crop yield estimation with accuracy of 92%
- FieldWatch supports disease identification, parcel crop condition and production

Global Cropland Data at 30m

Irrigated Cropland Mapping

- Mapping the extent of irrigation with the NDVI differences between irrigated and non-irrigated croplands under water stress;
- The irrigation area at a 30-m resolution is 23.4 % of global cropland in the period 2010–2019, with an overall accuracy of 83.6 % globally
- Separating regular and intermittent irrigation

Global Cropping Intensity at 30m

(U.S.)

NORFOLK

ISLAND

6.8123,-64.8576

MARSHAL

ISLANDS

FUEGOVARGENTINA

SOLITH SHETLAND

SANDWICH ISLANDS

Users to conduct crop monitoring on your own

CropWatch provide solutions for users to carry out self-serviced crop monitoring by selecting their preferred indicators, models for the user's area of interest, allowing users actively involved from remote sensing data preparation to the final synthesized analysis

Field level crop map

Paddy rice mapping

Outlines

- Overview of CropWatch
- Updates
 - Service modes
 - New tools for field data collection
 - Baseline dataset
 - > User defined crop monitoring
- Conclusion remarks

CropWatch Vision

- Promoting ownership
 - Customized according to the specific demand for each country and work as a national/regional system
- Respecting privacy and data sovereignty
 - Providing crop monitoring APIs to address the data sovereignty
 - Countries will strengthen the agricultural monitoring capacity on their own
- Reducing constraints
 - Cloud based system assessable from internet everywhere without investment on computing infrastructure, storage, etc

Take home message

- Website http://cloud.cropwatch.com.cn/
- GVG APP: <u>https://gvgserver.cropwatch.com.cn/download</u> (Android) <u>https://apps.apple.com/py/app/gvg%E5%86%9C%E6%83%85%E9%87%87%E9%9</u> <u>B%86/id1244686128</u> (iOS)
- FieldWatch APP:

https://play.google.com/store/apps/details?id=com.wisewoods.xtt&pli=1

- CropWatch Knowledge Package on GEO Knowledge Hub: <u>https://gkhub.earthobservations.org/packages/pps5h-ea276</u>
- Archive bulletins: <u>http://cloud.cropwatch.com.cn/site/bulletin</u>
- Research publications: <u>http://cloud.cropwatch.com.cn/publications/index</u>
- Email address: cropwatch@aircas.ac.cn

Openly shared datasets

- Global cropland mask @30m: <u>https://data.casearth.cn/thematic/cbas_2022/158</u>
- Global cropping intensity @30m: <u>https://doi.org/10.7910/DVN/86M4PO</u> <u>https://data.casearth.cn/thematic/cbas_2022/160</u>
- Global irrigation proportion @100m: <u>https://doi.org/10.7910/DVN/HKBAQQ</u>
- Global crop area, yield and production: <u>https://doi.org/10.7910/DVN/G1HBNK</u>
- Synthesis of Global ET: <u>https://doi.org/10.7910/DVN/ZGOUED</u>
- Africa Cropland Layer: <u>https://doi.org/10.6084/m9.figshare.13520141.v1</u>

Workshop on advancing satellite-based crop monitoring to increase resilience in the face of global food insecurity, 2-5 July 2024, Nigeria

Contacts:

wubf@aircas.ac.cn

cropwatch@radi.ac.cn

zhangmiao@aircas.ac.cn

Thank you!

Aerospace Information Research Institute(AIR) Chinese Academy of Sciences(CAS)